题目内容

以下三个关于圆锥曲线的命题中:
①设A、B为两个定点,K为非零常数,若|PA|-|PB|=K,则动点P的轨迹是双曲线.
②方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率
③双曲线
x2
25
-
y2
9
=1与椭圆
x2
35
+y2=1有相同的焦点.
④已知抛物线y2=2px,以过焦点的一条弦AB为直径作圆,则此圆与准线相切
其中真命题为______(写出所以真命题的序号)
A、B为两个定点,K为非零常数,若|PA|-|PB|=K,当K=|AB|时,动点P的轨迹是两条射线,故①错误;
方程2x2-5x+2=0的两根为
1
2
和2,可分别作为椭圆和双曲线的离心率,故②正确;
双曲线
x2
25
-
y2
9
=1的焦点坐标为(±
34
,0),椭圆
x2
35
-y2=1的焦点坐标为(±
34
,0),故③正确;
设AB为过抛物线焦点F的弦,P为AB中点,A、B、P在准线l上射影分别为M、N、Q,
∵AP+BP=AM+BN
∴PQ=
1
2
AB,
∴以AB为直径作圆则此圆与准线l相切,故④正确
故正确的命题有:②③④
故答案为:②③④
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网