题目内容

已知向量
m
=(2cosωx,1),
n
=(
3
sinωx-cosωx,a)
,其中(x∈R,ω>0),函数f(x)=
m
n
的最小正周期为π,最大值为3.
(I)求ω和常数a的值;
(Ⅱ)求函数f(x)的单调递增区间.
分析:(I)利用数量积化简函数,通过二倍角、两角和的正弦函数化为一个角的一个三角函数的形式,利用周期求出ω,通过最大值求出a的值;
(Ⅱ)结合(I)得到函数的表达式,利用正弦函数的单调增区间,求函数f(x)的单调递增区间.
解答:解:(I)f(x)=
m
n
=2
3
sinωxcosωx-2cos2ωx+a
(1分)
=
3
sin2ωx-cos2ωx-1+a
=2sin(2ωx-
π
6
)+a-1
(3分)
T=
,得ω=1.(4分)
又当sin(2ωx-
π
6
)=1
时ymax=2+a-1=3,得a=2(6分)
(Ⅱ)由(I)知f(x)=2sin(2x-
π
6
)+1
2kπ-
π
2
≤2x-
π
6
≤2kπ+
π
2
(k∈Z)
(8分)
kπ-
π
6
≤x≤kπ+
π
3
(10分)
故f(x)的单调增区间为[kπ-
π
6
,kπ+
π
3
]
,(k∈Z)(12分)
点评:本题是基础题,考查三角函数的化简求值,函数的周期、最值、单调增区间,考查计算能力,常考题型.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网