题目内容
(1)叙述并证明等比数列的前n项和公式;(2)已知Sn是等比数列{an} 的前n项和,S3,S9,S6成等差数列,求证:a1+k,a7+k,a4+k(k∈N)成等差数列;
(3)已知Sn是正项等比数列{an} 的前n项和,公比0<q≤1,求证:2Sn+1≥Sn+Sn+2.
|
(2)由S3,S9,S6成等差数列可得2S9=S3+S6,根据(1)可知公比q≠1,从而有
2a1(1-q9) |
1-q |
a1(1-q6) |
1-q |
a1(1-q3) |
1-q |
(3)分q=1时.2Sn+1-(Sn+Sn+2)=2(n+1)a1-na1-(n+2)a1=0?2Sn+1=Sn+Sn+2,0<q<1时,利用作差法可得,2Sn+1-(Sn+Sn+2)=
2a1(1-qn+1) |
1-q |
2a1(1-qn) |
1-q |
2a1(1-qn+2) |
1-q |
=a1qn(1-q)>0,从而可得2Sn+1>Sn+Sn+2
|
证明:设等比数列为{an},公比为q.
∴Sn=a1+a1q++a1qn-2+a1qn-1①
当q=1时,Sn=na1(2分)
当q≠1时,qSn=,a1q++a1qn-2+a1qn-1+a1qn②
1-②:(1-q)Sn=a1-a1qn2,从而Sn=
a1(1-qn) |
1-q |
∴Sn=
|
(2)∵S3,S9,S6成等差数列∴2S9=S3+S6,显然公比q≠1
∴
2a1(1-q9) |
1-q |
a1(1-q6) |
1-q |
a1(1-q3) |
1-q |
∴2a7+k=2a1qk+6=2a1q6•qk又因为:a1+k+a4+k=a1qk+a1qk+3=a1(1+q3)•qk
∵1+q3=2q6∴2a7+k=a1+k+a4+k
∴a1+k,a7+k,a4+k(k∈N)成等差数列.(8分)
(3)当q=1时.2Sn+1-(Sn+Sn+2)=2(n+1)a1-na1-(n+2)a1=0∴2Sn+1=Sn+Sn+2.(9分)
当0<q<1时,2Sn+1-(Sn+Sn+2)=
2a1(1-qn+1) |
1-q |
2a1(1-qn) |
1-q |
2a1(1-qn+2) |
1-q |
=a1qn(1-q)>0
∴2Sn+1>Sn+Sn+2
综上2Sn+1≥Sn+Sn+2(12分)
|