题目内容

精英家教网如图,在三棱锥V-ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=θ(0<θ<
π2
)

(1)求证:平面VAB⊥平面VCD;
(2)当角θ变化时,求直线BC与平面VAB所成的角的取值范围.
分析:解法一(几何法)(1)由已知中AC=BC,D是AB的中点,由等腰三角形三线合一,可得CD⊥AB,又由VC⊥底面ABC,由线面垂直的性质可得VC⊥AB,结合线面垂直的判定定理可得AB⊥平面VCD,再由面面垂直的判定定理可得平面VAB⊥平面VCD;
(2)过点C在平面VCD内作CH⊥VD于H,连接BH,可得∠CBH就是直线BC与平面VAB所成的角,设∠CBH=φ,根据CH=
2
2
asinθ
=asinφ,易得到直线BC与平面VAB所成角的取值范围.
解法二(向量法)(1)以CA,CB,CV所在的直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,分析求出
AB
CD
VD
易得根据向量数量积为0,得到CD⊥AB,VC⊥AB,结合线面垂直的判定定理可得AB⊥平面VCD,再由面面垂直的判定定理可得平面VAB⊥平面VCD;
(2)令直线BC与平面VAB所成的角为φ,求出平面VAB的一个法向量和
BC
,由向量夹角公式,易得到sin?=|
n•
BC
|n|•|
BC
|
|=
2
2
sinθ
,进而得到直线BC与平面VAB所成角的取值范围.
解答:精英家教网解:法一(几何法):
证明:(1)∵AC=BC=a
∴△ACB是等腰三角形,
又D是AB的中点∴CD⊥AB,
又VC⊥底面ABC∴VC⊥AB
于是AB⊥平面VCD.
又AB?平面VAB∴平面VAB⊥平面VCD
解:(2)过点C在平面VCD内作CH⊥VD于H,连接BH
则由(1)知AB⊥CH,∴CH⊥平面VAB
于是∠CBH就是直线BC与平面VAB所成的角.
在Rt△CHD中,CD=
2
2
a
CH=
2
2
asinθ

设∠CBH=φ,在Rt△BHC中,CH=asinφ∴
2
2
sinθ=sinφ
0<θ<
π
2
∴0<sinθ<1,0<sinφ<
2
2
精英家教网
0≤φ≤
π
2
,∴0<φ<
π
4

即直线BC与平面VAB所成角的取值范围为(0,
π
4
)

法二(向量法):
证明:(1)以CA,CB,CV所在的直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则C(0,0,0),A(a,0,0),B(0,a,0),D(
a
2
a
2
,0),V(0,0,
2
2
atanθ)

于是,
VD
=(
a
2
a
2
,-
2
2
atanθ)
CD
=(
a
2
a
2
,0)
AB
=(-a,a,0)

从而
AB
CD
=(-a,a,0)•(
a
2
a
2
,0)=-
1
2
a2+
1
2
a2+0=0
,即AB⊥CD.
同理
AB
VD
=(-a,a,0)•(
a
2
a
2
,-
2
2
atanθ)=-
1
2
a2+
1
2
a2+0=0

即AB⊥VD.又CD∩VD=D,∴AB⊥平面VCD.
又AB?平面VAB.∴平面VAB⊥平面VCD.
解:(2)设直线BC与平面VAB所成的角为φ,平面VAB的一个法向量为n=(x,y,z),
则由n•
AB
=0,n•
VD
=0

-ax+ay=0
a
2
x+
a
2
y-
2
2
aztanθ=0

可取n=(1,1,
2
cotθ)
,又
BC
=(0,-a,0)

于是sinφ=|
n•
BC
|n|•|
BC
|
|=
a
a•
2+2cot2θ
=
2
2
sinθ

0<θ<
π
2
,∴0<sinθ<1,0<sinφ<
2
2

0≤φ≤
π
2
,∴0<φ<
π
4

即直线BC与平面VAB所成角的取值范围为(0,
π
4
)
点评:本题考查的知识点是平面与平面垂直的判定,直线与平面所成的角,其中方法一(几何法)的关键是熟练掌握线线垂直、线面垂直、面面垂直之间的转化,方法二(向量法)的关键是建立空间坐标系,将空间线线关系、线面夹角转化为向量夹角问题是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网