题目内容

数列{an} 中a1=
1
2
,前n项和Sn满足Sn+1-Sn=(
1
2
)n+1
(n∈N*).
( I ) 求数列{an}的通项公式an以及前n项和Sn
(Ⅱ)记  bn=
n+1
2an
(n∈N*)求数列{bn} 的前n项和Tn
(Ⅲ)试确定Tn
5n
4n+2
(n∈N*)的大小并证明.
分析:(I)由s n+1-sn=(
1
2
)n+1
an+1=(
1
2
)n+1
(n∈N*),由此能求出数列{an}的通项公式an以及前n项和Sn
(Ⅱ)由bn=
n+1
2an
=
n+1
2n
=
n+1
2n+1
,知Tn=
2
22
+
3
23
+
4
24
++
n+1
2n+1
,再由错位相减法能求出数列{bn} 的前n项和Tn
(Ⅲ)由Tn-
5n
4n+2
=
3
2
-
n+3
2n+1
-
5n
4n+2
=
(n+3)(2n-2n-1)
2n+1(2n+1)
,知确定Tn
5n
4n+2
的大小关系等价于比较2n与2n+1的大小,经分类讨论知n=1,2时Tn
5n
4n+2
,n=3时Tn
5n
4n+2
解答:解:(I)s n+1-sn=(
1
2
)n+1
an+1=(
1
2
)n+1
(n∈N*)(1分)
又a1=
1
2
,故an=(
1
2
)n
(n∈N*)(2分)
从而sn=
1
2
[1-(
1
2
)
n
]
1-
1
2
=1-(
1
2
)n
(4分)
(Ⅱ)由(I)bn=
n+1
2an
=
n+1
2n
=
n+1
2n+1
Tn=
2
22
+
3
23
+
4
24
++
n+1
2n+1
,(5分)
1
2
Tn=    
2
23
+
3
24
+
4
25
++
n
2n+1
+
n+1
2n+2
(6分)
两式相减,得
1
2
Tn=    
2
22
+
1
23
+
1
24
+
1
25
++
1
2n+1
-
n+1
2n+2
(7分)
=
1
2
+
1
23
×(1-
1
2n-1
)
1-
1
2
-
n+1
2n+2
=
3
4
-
1
2n+1
-
n+1
2n+2
(8分)
所以Tn=
3
2
-
1
2n
-
n+1
2n+1
=
3
2
-
n+3
2n+1
(9分),
(Ⅲ)Tn-
5n
4n+2
=
3
2
-
n+3
2n+1
-
5n
4n+2
=
(n+3)(2n-2n-1)
2n+1(2n+1)

于是确定Tn
5n
4n+2
的大小关系等价于比较2n与2n+1的大小(10分)
n=1时2<2+1,n=2时22<2×2+1,n=3时23>2×3+1(11分)
令g(x)=2x-2x-1,g′(x)=2xln2-2,x>2时g(x)为增函数,(12分)
所以n≥3时g(n)≥g(3)=1>0,2n≥2n+1,(13分)
综上所述n=1,2时Tn
5n
4n+2
n=3时Tn
5n
4n+2
(14分)
点评:本题考查数列的通项公式、前n项和的求法和数列与不等式的综合应用,解题时要认真审题,注意错位相关法的合理运用,恰当地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网