题目内容
【题目】已知函数,其中为自然对数的底数.
(1)若函数在区间上是单调函数,试求的取值范围;
(2)若函数在区间上恰有3个零点,且,求的取值范围.
【答案】(1);(2).
【解析】
(1)求出,再求恒成立,以及恒成立时,的取值范围;
(2)由已知,在区间内恰有一个零点,转化为在区间内恰有两个零点,由(1)的结论对分类讨论,根据单调性,结合零点存在性定理,即可求出结论.
(1)由题意得,则,
当函数在区间上单调递增时,
在区间上恒成立.
∴(其中),解得.
当函数在区间上单调递减时,
在区间上恒成立,
∴(其中),解得.
综上所述,实数的取值范围是.
(2).
由,知在区间内恰有一个零点,
设该零点为,则在区间内不单调.
∴在区间内存在零点,
同理在区间内存在零点.
∴在区间内恰有两个零点.
由(1)易知,当时,在区间上单调递增,
故在区间内至多有一个零点,不合题意.
当时,在区间上单调递减,
故在区间内至多有一个零点,不合题意,
∴.令,得,
∴函数在区间上单凋递减,
在区间上单调递增.
记的两个零点为,
∴,必有.
由,得.
∴
又∵,
∴.
综上所述,实数的取值范围为.
练习册系列答案
相关题目
【题目】为认真贯彻落实党中央国务院决策部署,坚持“房子是用来住的,不是用来炒的”定位,坚持调控政策的连续性和稳定性,进一步稳定某省市商品住房市场,该市人民政府办公厅出台了相关文件来控制房价,并取得了一定效果,下表是2019年2月至6月以来该市某城区的房价均值数据:
(月份) | 2 | 3 | 4 | 5 | 6 |
(房价均价:千元/平方米) | 9.80 | 9.70 | 9.30 | 9.20 |
已知:.
(1)若变量、具有线性相关关系,求房价均价(千元/平方米)关于月份的线性回归方程;
(2)根据线性回归方程预测该市某城区7月份的房价.
(参考公式:用最小二乘法求线性回归方程的系数公式)