题目内容

两圆x2+y2+2ax+a2-4=0和x2+y2-4by-1+4b2=0恰有三条公切线,若a∈R,b∈R,且ab≠0,则数学公式的最小值为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    1
  4. D.
    3
C
分析:由题意可得 两圆相外切,根据两圆的标准方程求出圆心和半径,由 =3,得到 =1,
=+=++,使用基本不等式求得的最小值.
解答:由题意可得 两圆相外切,两圆的标准方程分别为 (x+a)2+y2=4,x2+(y-2b)2=1,
圆心分别为(-a,0),(0,2b),半径分别为 2和1,故有 =3,∴a2+4b2=9,
=1,∴=+=++
+2=1,当且仅当 = 时,等号成立,
故选 C.
点评:本题考查两圆的位置关系,两圆相外切的性质,圆的标准方程的特征,基本不等式的应用,得到 =1,
是解题的关键和难点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网