ÌâÄ¿ÄÚÈÝ
8£®ÒÑÖªÔ²M¹ýE£¨1£¬-1£©£¬F£¨-1£¬1£©Á½µã£¬ÇÒÔ²ÐÄÔÚx+y-2=0ÉÏ£¬£¨1£©ÇóÔ²MµÄ·½³Ì£»
£¨2£©Èô¹ýµã£¨-2£¬2£©µÄÖ±Ïß±»Ô²MËù½ØµÃµÃÏÒ³¤Îª$2\sqrt{3}$£¬Çó¸ÃÖ±Ïߵķ½³Ì£»
£¨3£©ÈôPΪֱÏß3x+4y+8=0ÉϵĶ¯µã£¬¹ýP×öÔ²MµÄÇÐÏߣ¬ÇеãΪA£¬B£¬Çóµ±$\overrightarrow{|{PA}|}$µÄ×îСֵ£¬²¢Çó´Ëʱ$\overrightarrow{PA}•\overrightarrow{PB}$µÄÖµ£®
·ÖÎö £¨1£©Éè³öÔ²µÄ±ê×¼·½³Ì£¬ÀûÓÃÔ²M¹ýE£¨1£¬-1£©£¬F£¨-1£¬1£©Á½µã£¬ÇÒÔ²ÐÄÔÚx+y-2=0ÉÏ£¬½¨Á¢·½³Ì×飬¼´¿ÉÇóÔ²MµÄ·½³Ì£»
£¨2£©Çó³öÔ²Ðĵ½Ö±ÏߵľàÀëΪ1£¬·ÖÀàÌÖÂÛ£¬¼´¿ÉÇó¸ÃÖ±Ïߵķ½³Ì£»
£¨3£©ÓÉÌâÒ⣬$\overrightarrow{|{PA}|}$×îСʱ£¬MP´¹Ö±ÓÚÖ±Ïߣ¬´Ëʱ|MP|=$\frac{|3+4+8|}{\sqrt{9+16}}$=3£¬$\overrightarrow{|{PA}|}$=$\sqrt{5}$£¬¼´¿ÉÇó´Ëʱ$\overrightarrow{PA}•\overrightarrow{PB}$µÄÖµ£®
½â´ð ½â£º£¨1£©ÉèÔ²MµÄ·½³ÌΪ£º£¨x-a£©2+£¨y-b£©2=r2£¨r£¾0£©£¬
¸ù¾ÝÌâÒâµÃ$\left\{\begin{array}{l}{£¨1-a£©^{2}+£¨-1-b£©^{2}={r}^{2}}\\{£¨-1-a£©^{2}+£¨1-b£©^{2}={r}^{2}}\\{a+b-2=0}\end{array}\right.$£¬½âµÃ£ºa=b=1£¬r=2£¬
¹ÊËùÇóÔ²MµÄ·½³ÌΪ£º£¨x-1£©2+£¨y-1£©2=4£®
£¨2£©Ô²µÄ°ë¾¶Îª2£¬Ö±Ïß±»Ô²MËù½ØµÃµÃÏÒ³¤Îª$2\sqrt{3}$£¬¡àÔ²Ðĵ½Ö±ÏߵľàÀëΪ1£®
Ö±ÏßµÄбÂʲ»´æÔÚʱ£¬x=-2£¬Ô²Ðĵ½Ö±ÏߵľàÀëΪ3£¬²»·ûºÏÌâÒ⣻
Ö±ÏßµÄбÂÊ´æÔÚʱ£¬Éè·½³ÌΪy-2=k£¨x+2£©£¬¼´kx-y+2k+2=0£¬
¡àÔ²Ðĵ½Ö±ÏߵľàÀëΪ$\frac{|3k+1|}{\sqrt{{k}^{2}+1}}$=1£¬¡àk=0»ò-$\frac{3}{4}$£¬
¡àÖ±Ïߵķ½³ÌΪy=2»ò3x+4y-2=0£»
£¨3£©ÓÉÌâÒ⣬$\overrightarrow{|{PA}|}$×îСʱ£¬MP´¹Ö±ÓÚÖ±Ïߣ¬´Ëʱ|MP|=$\frac{|3+4+8|}{\sqrt{9+16}}$=3£¬¡à$\overrightarrow{|{PA}|}$=$\sqrt{5}$£¬
sin¡ÏAPM=$\frac{2}{3}$£¬cos¡ÏAPM=$\frac{\sqrt{5}}{3}$£¬¡àcos¡ÏAPB=2cos2¡ÏAPM-1=$\frac{1}{9}$£¬
¡à$\overrightarrow{PA}•\overrightarrow{PB}$=$\frac{5}{9}$£®
µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÔ²µÄ±ê×¼·½³Ì£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬È·¶¨Ô²ÐÄÓë°ë¾¶Êǹؼü£¬ÊôÓÚÖеµÌ⣮
A£® | $\frac{9}{25}$ | B£® | $\frac{4}{25}$ | C£® | $\frac{3}{10}$ | D£® | $\frac{2}{5}$ |
ÆäÖеڶþС×éµÄƵÊýΪ36£¬ÔònΪ£¨¡¡¡¡£©
A£® | 200 | B£® | 400 | C£® | 2000 | D£® | 4000 |
£¨¢ñ£©Îª±ãÓÚÑо¿·ÖÎö£¬½ÌÓýר¼Ò½«Aģʽ³ÆΪ´«Í³¿ÎÌÃģʽ£¬B¡¢Cͳ³ÆΪпÎÌÃģʽ£¬¸ù¾ÝËæÌüì²â½á¹û£¬°Ñ¿ÎÌýÌѧЧÂÊ·ÖΪ¸ßЧºÍ·Ç¸ßЧ£¬¸ù¾Ý¼ì²â½á¹ûͳ¼ÆµÃµ½ÈçÏÂ2¡Á2ÁÐÁª±í£¨µ¥Î»£º½Ú£©£¬ÇëÓÉͳ¼ÆÊý¾Ý»Ø´ð£ºÓÐûÓÐ99%µÄ°ÑÎÕÈÏΪ¿ÎÌýÌѧЧÂÊÓë½ÌѧģʽÓйأ¿²¢ËµÃ÷ÀíÓÉ£®
¸ßЧ | ·Ç¸ßЧ | ͳ¼Æ | |
пγ£Ä£Ê½ | 60 | 30 | 90 |
´«Í³¿ÎÌÃģʽ | 40 | 50 | 90 |
ͳ¼Æ | 100 | 80 | 180 |
¢ÙÇóÖÁÉÙÓÐÒ»½ÚΪCģʽ¿ÎÌõĸÅÂÊ£»
¢ÚÉèËæ»ú³éÈ¡µÄ3½Ú¿ÎÖк¬ÓÐCģʽ¿ÎÌõĽÚÊýΪX£¬ÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
²Î¿¼ÁÙ½çÖµ±í£º
P£¨K2¨RK0£© | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.897 | 10.828 |
ÆÀ·Ö | 1 | 2 | 3 | 4 | 5 |
ÈËÊý | x | 20 | 10 | 5 | y |
£¨¢ñ£©ÇóxÓëyµÄÖµ£»
£¨¢ò£©Èô½«ÆµÂÊÊÓΪ¸ÅÂÊ£¬ÏÖ´Ó¶Ô¸ÃÉÌÆ·×÷³öÁËÆÀ¼ÛµÄ¹Ë¿ÍÖУ¬Ëæ»ú³éȡһ룬¼Ç¸Ã¹Ë¿ÍµÄÆÀ·ÖΪX£¬ÇóËæ»ú±äÁ¿XµÄ·Ö²¼ÁÐÒ»ÓëÊýѧÆÚÍû£®
A£® | 50 | B£® | 77 | C£® | 78 | D£® | 306 |
A£® | g£¨x£©=sin£¨2x+$\frac{5¦Ð}{12}$£© | B£® | g£¨x£©=sin£¨2x+$\frac{¦Ð}{12}$£© | C£® | g£¨x£©=sin£¨2x-$\frac{¦Ð}{12}$£© | D£® | g£¨x£©=sin£¨2x-$\frac{5¦Ð}{12}$£© |
A£® | £¨-6£¬7£© | B£® | £¨-15£¬1£© | C£® | £¨-14£¬2£© | D£® | £¨-8£¬1£© |