题目内容
如果方程(x-1)(x2-2x+m)=0的三个根可以作为一个三角形的三条边长,那么实数m的取值范围是( )A.0≤m≤1 B.
<m≤1 C.
≤m≤1 Dm≥![]()
B
解析:x2-2x+m=0有两个实根,故Δ=4-4m≥0即m≤1,
又|x1-x2|=
<1,
解得m>
,故
<m≤1.
练习册系列答案
相关题目
题目内容
如果方程(x-1)(x2-2x+m)=0的三个根可以作为一个三角形的三条边长,那么实数m的取值范围是( )A.0≤m≤1 B.
<m≤1 C.
≤m≤1 Dm≥![]()
B
解析:x2-2x+m=0有两个实根,故Δ=4-4m≥0即m≤1,
又|x1-x2|=
<1,
解得m>
,故
<m≤1.