题目内容

已知A,B,C是△ABC的三个内角,向量
a
=(
3
,-1),
b
=(sinA,cosA)
,且
a
b
=1

(1)求角A;
(2)若
1+sin2B
cos2B-sin2B
=-3
,求tanC.
分析:(1)△ABC中,由向量
a
=(
3
,-1),
b
=(sinA,cosA)
,且
a
b
=1
,可得
3
sinA-cosA=1,求得sin(A-
π
6
)=
1
2
.结合0<A<π,求得A的值.
(2)利用三角函数的恒等变换化简所给的等式为
1+tanB
1-tanB
=-3
,解得tanB的值,再由tanC=-tan(A+B),利用两角和的正切公式运算求得结果.
解答:解:(1)△ABC中,由向量
a
=(
3
,-1),
b
=(sinA,cosA)
,且
a
b
=1
,可得
3
sinA-cosA=1,
2sin(A-
π
6
)=1
,∴sin(A-
π
6
)=
1
2
.…(4分)
而∵0<A<π,∴-
π
6
<A-
π
6
6
,…(5分)
A-
π
6
=
π
6
,即∴A=
π
3
. …(6分)
(2)∵
1+sin2B
cos2B-sin2B
=
(cosB+sinB)2
cos2B-sin2B
=
cosB+sinB
cosB-sinB
=
1+tanB
1-tanB
=-3

∴解得tanB=2,…(11分)
tanC=-tan(A+B)=-
tanA+tanB
1-tanA•tanB
=
8+5
3
11
.…(14分)
点评:本题主要考查两个向量的数量积公式,三角函数的恒等变换及化简求值,根据三角函数的直求角,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网