题目内容
已知函数![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172552056786826/SYS201311031725520567868023_ST/0.png)
(1)求an;
(2)设Sn为数列
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172552056786826/SYS201311031725520567868023_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172552056786826/SYS201311031725520567868023_ST/2.png)
(3)若
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172552056786826/SYS201311031725520567868023_ST/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172552056786826/SYS201311031725520567868023_ST/4.png)
【答案】分析:(1)利用导数判断函数的单调性,由函数的单调性确定函数的最小值,可求an的值.
(2)对数列
的同项公式进行变形、裂项求和,然后再对和求极限.
(3)化简Tn的解析式,由
,及
y=cosx在[0,π]上单调递减,可得Tn<Tn+1 .
解答:解:(1)由题![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172552056786826/SYS201311031725520567868023_DA/2.png)
令f'(x)=0,得![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172552056786826/SYS201311031725520567868023_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172552056786826/SYS201311031725520567868023_DA/images4.png)
所以
;
(2)因为![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172552056786826/SYS201311031725520567868023_DA/5.png)
所以![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172552056786826/SYS201311031725520567868023_DA/6.png)
所以![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172552056786826/SYS201311031725520567868023_DA/7.png)
(3)
,
又由
知
,
从而![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172552056786826/SYS201311031725520567868023_DA/11.png)
又y=cosx在[0,π]上单调递减,所以Tn<Tn+1.
点评:本题考查在闭区间上利用导数求函数的最值,求数列的极限,及用裂项法进行数列求和.是中档题.
(2)对数列
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172552056786826/SYS201311031725520567868023_DA/0.png)
(3)化简Tn的解析式,由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172552056786826/SYS201311031725520567868023_DA/1.png)
y=cosx在[0,π]上单调递减,可得Tn<Tn+1 .
解答:解:(1)由题
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172552056786826/SYS201311031725520567868023_DA/2.png)
令f'(x)=0,得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172552056786826/SYS201311031725520567868023_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172552056786826/SYS201311031725520567868023_DA/images4.png)
所以
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172552056786826/SYS201311031725520567868023_DA/4.png)
(2)因为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172552056786826/SYS201311031725520567868023_DA/5.png)
所以
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172552056786826/SYS201311031725520567868023_DA/6.png)
所以
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172552056786826/SYS201311031725520567868023_DA/7.png)
(3)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172552056786826/SYS201311031725520567868023_DA/8.png)
又由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172552056786826/SYS201311031725520567868023_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172552056786826/SYS201311031725520567868023_DA/10.png)
从而
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172552056786826/SYS201311031725520567868023_DA/11.png)
又y=cosx在[0,π]上单调递减,所以Tn<Tn+1.
点评:本题考查在闭区间上利用导数求函数的最值,求数列的极限,及用裂项法进行数列求和.是中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目