题目内容
Sn=2
+4
+6
+…+(2n+
)=______.
1 |
3 |
1 |
9 |
1 |
27 |
1 |
3n |
Sn=2
+4
+6
+…(2n+
)
=(2+4+6+…+2n)+(
+
+…+
)
=
×n+
=n(n+1)+
故答案为:n(n+′1)+
1 |
3 |
1 |
9 |
1 |
27 |
1 |
3n |
=(2+4+6+…+2n)+(
1 |
3 |
1 |
9 |
1 |
3n |
=
2+2n |
2 |
| ||||
1-
|
=n(n+1)+
1-(
| ||
2 |
故答案为:n(n+′1)+
1-(
| ||
2 |

练习册系列答案
相关题目