题目内容

对于函数f(x)=ax2+(b+1)x+b-2(a≠0),若存在实数x0,使f(x0)=x0成立,则称x0为f(x)的不动点.
(1)当a=2,b=-2时,求f(x)的不动点;
(2)若对于任何实数b,函数f(x)恒有两相异的不动点,求实数a的取值范围;
(3)在(2)的条件下,若y=f(x)的图象上A、B两点的横坐标是函数f(x)的不动点,且直线y=kx+
12a2+1
是线段AB的垂直平分线,求实数b的取值范围.
分析:(1)设x为不动点,则有2x2-x-4=x,变形为2x2-2x-4=0,解方程即可.
(2)将f(x)=x转化为ax2+bx+b-2=0.由已知,此方程有相异二实根,则有△x>0恒成立求解;
(3)由垂直平分线的定义解决,由A、B两点的横坐标是函数f(x)的不动点,则有kAB=1,再由直线y=kx+
1
2a2+1
是线段AB的垂直平分线,得到k=-1,再由中点在直线y=kx+
1
2a2+1
上求解.
解答:解∵f(x)=ax2+(b+1)x+b-2(a≠0),
(1)当a=2,b=-2时,f(x)=2x2-x-4.
设x为其不动点,即2x2-x-4=x.
则2x2-2x-4=0.∴x1=-1,x2=2.即f(x)的不动点是-1,2.
(2)由f(x)=x得:ax2+bx+b-2=0.由已知,此方程有相异二实根,△x>0恒成立,即b2-4a(b-2)>0.即b2-4ab+8a>0对任意b∈R恒成立.∴△b<0.,∴16a2-32a<0,∴0<a<2.
(3)设A(x1,x1),B(x2,x2),
直线y=kx+
1
2a2+1
是线段AB的垂直平分线,∴k=-1
记AB的中点M(x0,x0).由(2)知x0=-
b
2a
,∵M在y=kx+
1
2a2+1
,∴-
b
2a
=
b
2a
+
1
2a2+1

化简得:b=-
a
2a2+1
=-
1
2a+
1
a
≥-
1
2
2a•
1
a
=-
2
4
(当a=
2
2
时,等号成立).
即0>b≥-
2
4
.即[-
2
4
,0
).
点评:本题主要考查方程的解法,方程根的情况以及垂直平分线定义的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网