题目内容

设不等式组
x+y>0
x-y>0
表示的平面区域为D、区域D内的动点P到直线x+y=0和直线x-y=0的距离之积为1.记点P的轨迹为曲线C、
(Ⅰ)求曲线C的方程;
(Ⅱ)过点F(2,0)的直线与曲线C交于A,B两点.若以线段AB为直径的圆与y轴相切,求线段AB的长.
分析:(Ⅰ)动点P(x,y),根据题意可知
|x+y|
2
×
|x-y|
2
=1,整理得|x2-y2|=2.根据P∈D推断出x+y>0,x-y>0,进而可得x2-y2>0,答案可得.
(Ⅱ)设A(x1,y1),B(x2,y2),进而可得以线段AB为直径的圆的圆心Q的坐标,根据以线段AB为直径的圆与y轴相切,推断r=
1
2
|AB|=
x1+x2
2
.进而根据双曲线定义得|AB|=|AF|+|BF|,进而求得x1+x2的值,求得线段AB的长.
解答:精英家教网解:(Ⅰ)由题意可知,平面区域D如图阴影所示.

设动点P(x,y),则
|x+y|
2
×
|x-y|
2
=1,
即|x2-y2|=2.
∵P∈D、
∴x+y>0,x-y>0,即x2-y2>0.
∴x2-y2=2(x>0).
即曲线C的方程为
x2
2
-
y2
2
=1(x>0).
(Ⅱ)设A(x1,y1),B(x2,y2),
∴以线段AB为直径的圆的圆心Q(
x1+x2
2
y1+y2
2
),
∵以线段AB为直径的圆与y轴相切,
∴半径r=
1
2
|AB|=
x1+x2
2
精英家教网
即|AB|=x1+x2.①
∵曲线C的方程为
x2
2
-
y2
2
=1(x>0),
∴F(2,0)为其焦点,相应的准线方程为x=1,离心率e=
2

根据双曲线的定义可得,
|AF|
x1-1
=
|BF|
x2-1
=
2

∴|AB|=|AF|+|BF|=
2
(x1-1)+
2
(x2-1)=
2
(x1+x2)-2
2
.②
由①,②可得,x1+x2=
2
(x1+x2)-2
2

由此可得x1+x2=4+2
2

∴线段AB的长为4+2
2
点评:本题主要考查了双曲线的标准方程和直线与双曲线的关系.考查了学生综合分析问题和运算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网