题目内容
已知:对于数列{an},定义{△an}为数列{an}的一阶差分数列,其中△an=an+1-an,
(1)若数列{an}的通项公式an=
n2-
n(n∈N*),求:数列{△an}的通项公式;
(2)若数列{an}的首项是1,且满足△an-an=2n,
①设bn=
,求证:数列{bn}是等差数列,并求数列{bn}的通项公式;
②求:数列{an}的通项公式及前n项和Sn.
(1)若数列{an}的通项公式an=
5 |
2 |
3 |
2 |
(2)若数列{an}的首项是1,且满足△an-an=2n,
①设bn=
an |
2n |
②求:数列{an}的通项公式及前n项和Sn.
(1)依题意△an=an+1-an,
∴△an=[
(n+1)2-
(n+1)]-[
n2-
n]=5n+1
(2)①由△an-an=2n?an+1-an-an=2n?an+1=2an+2n.
∵bn=
,
∴bn+1-bn=
-
=
=
=
,且b1=
=
,
故{bn}是首项为
,公差为
的等差数列
∴bn=
②∵bn=
,
∴an=
•2n=n•2n-1
∴sn=1•20+2×21+3×22+…+n•2n-1(1)
2sn=1•21+2•22+…+n•2n(2)
(1)-(2)得-sn=1+2+22+…+2n-1-n•2n
=
-n•2n
∴sn=n•2n-2n+1
=(n-1)2n+1.
∴△an=[
5 |
2 |
3 |
2 |
5 |
2 |
3 |
2 |
(2)①由△an-an=2n?an+1-an-an=2n?an+1=2an+2n.
∵bn=
an |
2n |
∴bn+1-bn=
an+1 |
2n+1 |
an |
2n |
an+1-2an |
2n+1 |
2n |
2n+1 |
1 |
2 |
a1 |
2 |
1 |
2 |
故{bn}是首项为
1 |
2 |
1 |
2 |
∴bn=
n |
2 |
②∵bn=
an |
2n |
∴an=
n |
2 |
∴sn=1•20+2×21+3×22+…+n•2n-1(1)
2sn=1•21+2•22+…+n•2n(2)
(1)-(2)得-sn=1+2+22+…+2n-1-n•2n
=
1-2n |
1-2 |
∴sn=n•2n-2n+1
=(n-1)2n+1.
练习册系列答案
相关题目