题目内容

(2009江苏卷)(本小题满分16分)

在平面直角坐标系中,已知圆和圆.

(1)若直线过点,且被圆截得的弦长为,求直线的方程;

(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标。

【解析】 本小题主要考查直线与圆的方程、点到直线的距离公式,考查数学运算求解能力、综合分析问题的能力。满分16分。

(1)设直线的方程为:,即

由垂径定理,得:圆心到直线的距离

结合点到直线距离公式,得:     

化简得:

求直线的方程为:,即

(2) 设点P坐标为,直线的方程分别为:   

,即:

因为直线被圆截得的弦长与直线被圆截得的弦长相等,两圆半径相等。由垂径定理,得::圆心到直线直线的距离相等。    

故有:

化简得:

关于的方程有无穷多解,有:     

解之得:点P坐标为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网