题目内容
(2009江苏卷)(本小题满分16分)
在平面直角坐标系中,已知圆和圆.
(1)若直线过点,且被圆截得的弦长为,求直线的方程;
(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标。
【解析】 本小题主要考查直线与圆的方程、点到直线的距离公式,考查数学运算求解能力、综合分析问题的能力。满分16分。
(1)设直线的方程为:,即
由垂径定理,得:圆心到直线的距离,
结合点到直线距离公式,得:
化简得:
求直线的方程为:或,即或
(2) 设点P坐标为,直线、的方程分别为:
,即:
因为直线被圆截得的弦长与直线被圆截得的弦长相等,两圆半径相等。由垂径定理,得::圆心到直线与直线的距离相等。
故有:,
化简得:
关于的方程有无穷多解,有:
解之得:点P坐标为或。
练习册系列答案
相关题目
(2009江苏卷)某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:
学生 | 1号 | 2号 | 3号 | 4号 | 5号 |
甲班 | 6 | 7 | 7 | 8 | 7 |
乙班 | 6 | 7 | 6 | 7 | 9 |
则以上两组数据的方差中较小的一个为= .