题目内容

下图是某游戏中使用的材质均匀的圆形转盘,其中Ⅰ,Ⅱ,Ⅲ,Ⅳ部分的面积各占转盘面积的.游戏规则如下:

① 当指针指到Ⅰ,Ⅱ, Ⅲ,Ⅳ部分时,分别获得积分100分,40分,10分,0分;

② (ⅰ)若参加该游戏转一次转盘获得的积分不是40分,则按①获得相应的积分,游戏结束;

(ⅱ)若参加该游戏转一次获得的积分是40分,则用抛一枚质地均匀的硬币的方法来决定是否继续游戏.正面向上时,游戏结束;反面向上时,再转一次转盘,若再转一次的积分不高于40分,则最终积分为0分,否则最终积分为100分,游戏结束.

设某人参加该游戏一次所获积分为

(1)求的概率;

(2)求的概率分布及数学期望.

 

【答案】

(1)83:144

(2)的概率分布为:

0

10

40

100

(分)

【解析】

试题分析:解:(1)事件“”包含:“首次积分为0分”和“首次积分为40分

后再转一次的积分不高于40分”,且两者互斥,

所以;          4分

(2)的所有可能取值为0,10,40,100,

由(1)知

所以的概率分布为:

0

10

40

100

因此,(分).      10分

考点:独立事件的概率和期望

点评:主要是考查了独立事件的概率公式,以及分布列的求解,属于中档题。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网