题目内容
5.已知数列{an}的前n项和为Sn,且满足Sn=$\frac{1}{4}$n2+$\frac{2}{3}$n+3,数列{log3bn}{n∈N*}为等差数列,且b1=3,b3=27.(1)求数列{an}与{bn}的通项公式;
(2)若cn=an-$\frac{5}{12}$,Tn=b1c1+b2c2+b3c3+…+bncn,求Tn的值.
分析 (1)在数列递推式中取n=1求出首项,当n≥2时,由an=Sn-Sn-1求得通项公式,验证首项后得数列{an}的通项公式,再由数列{log3bn}{n∈N*}为等差数列,且b1=3,b3=27求出等差数列的公差,代入等差数列的通项公式求得数列{log3bn}的通项公式,则数列{bn}的通项公式可求;
(2)由cn=an-$\frac{5}{12}$求得cn,代入Tn=b1c1+b2c2+b3c3+…+bncn,然后由错位相减法求得Tn的值.
解答 解:(1)当n=1时,${a}_{1}={S}_{1}=\frac{1}{4}×{1}^{2}+\frac{2}{3}×1+3=\frac{47}{12}$;
当n≥2时,an=Sn-Sn-1=$\frac{1}{4}$n2+$\frac{2}{3}$n+3-[$\frac{1}{4}(n-1)^{2}+\frac{2}{3}(n-1)+3$]
=$\frac{1}{4}[{n}^{2}-(n-1)^{2}]+\frac{2}{3}[n-(n-1)]$=$\frac{1}{2}n+\frac{5}{12}$,
当n=1时上式不成立,
∴${a}_{n}=\left\{\begin{array}{l}{\frac{47}{12},n=1}\\{\frac{1}{2}n+\frac{5}{12},n≥2}\end{array}\right.$;
数列{log3bn}{n∈N*}为等差数列,且b1=3,b3=27.
则公差d=$\frac{lo{g}_{3}{b}_{3}-lo{g}_{3}{b}_{1}}{2}=\frac{lo{g}_{3}\frac{{b}_{3}}{{b}_{1}}}{2}$=$\frac{lo{g}_{3}9}{2}=1$,
∴log3bn=log3b1+1×(n-1)=log33+n-1=n,
则${b}_{n}={3}^{n}$;
(2)cn=an-$\frac{5}{12}$=$\left\{\begin{array}{l}{\frac{7}{2},n=1}\\{\frac{n}{2},n≥2}\end{array}\right.$,
Tn=b1c1+b2c2+b3c3+…+bncn
=$3×\frac{7}{2}$+$\frac{2}{2}×{3}^{2}+\frac{3}{2}×{3}^{3}+…+\frac{n}{2}×{3}^{n}$
=$\frac{21}{2}$+$\frac{2}{2}×{3}^{2}+\frac{3}{2}×{3}^{3}+…+\frac{n}{2}×{3}^{n}$,
令Rn=$\frac{2}{2}×{3}^{2}+\frac{3}{2}×{3}^{3}+…+\frac{n}{2}×{3}^{n}$,
则$3{R}_{n}=\frac{2}{2}×{3}^{3}+\frac{3}{2}×{3}^{4}+…+$$\frac{n-1}{2}×{3}^{n}+\frac{n}{2}×{3}^{n+1}$,
两式作差得:$-2{R}_{n}={3}^{2}+\frac{1}{2}({3}^{3}+{3}^{4}+…+{3}^{n})-\frac{n}{2}×{3}^{n+1}$
=$9+\frac{1}{2}×\frac{27(1-{3}^{n-2})}{1-3}-\frac{n}{2}×{3}^{n+1}$=$9+\frac{1}{4}({3}^{n+1}-27)-\frac{n}{2}×{3}^{n+1}$,
∴${R}_{n}=(\frac{n}{4}-\frac{1}{8})•{3}^{n+1}-\frac{9}{8}$.
则${T}_{n}=(\frac{n}{4}-\frac{1}{8})•{3}^{n+1}+$$\frac{75}{8}$.
点评 本题考查了数列递推式,考查了等差数列的通项公式,考查了对数的运算性质,训练了错位相减法求数列的和,是中档题.