题目内容
设不等式组![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_ST/0.png)
(1)求数列{an}的通项公式;
(2)(理)设
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_ST/1.png)
(3)设
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_ST/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_ST/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_ST/4.png)
(文)记数列{an}的前n项和为Sn,且
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_ST/5.png)
【答案】分析:(1)由题设知Dn内的整点在直线x=1和x=2上.记直线y=-nx+3n为l,l与直线x=1和x=2的交点的纵坐标分别为y1、y2,由y1=2n,y2=n,知an=3n(n∈N*).
(2)(理)(i)由
.知
.所以
≥
.
(ii)
=
)≥
=
.
(文)由题设知Tn=
.Tn+1-Tn=
-
=
,n≥3时{Tn}是递减数列,且
,所以T2,T3是数列{Tn}的最大项,故m≥
.
解答:解:(1)∵x>0,y=3n-nx>0,0<x<3,x=1或x=2.
∴Dn内的整点在直线x=1和x=2上.记直线y=-nx+3n为l,l与直线x=1和x=2的交点的纵坐标分别为y1、y2,
∴y1=2n,y2=n.∴an=3n(n∈N*).
(2)(理)(i)
.
∵
.
∴Sn+1>Sn,Sn≥S2(n>1,n∈N*).
∵
≥
.
(ii)
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_DA/19.png)
=
)
≥
=
.
(文)∵Sn=3(1+2+3+…+n)=
,∴Tn=
.
∴Tn+1-Tn=
-
=
,∴当n≥3时,Tn+1<Tn,∴n≥3时{Tn}是递减数列,且
,∴T2,T3是数列{Tn}的最大项,故m≥![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_DA/30.png)
点评:本题考查数列的性质和应用,解题时要注意公式的合理运用和不等式的应用.
(2)(理)(i)由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_DA/3.png)
(ii)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_DA/7.png)
(文)由题设知Tn=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_DA/13.png)
解答:解:(1)∵x>0,y=3n-nx>0,0<x<3,x=1或x=2.
∴Dn内的整点在直线x=1和x=2上.记直线y=-nx+3n为l,l与直线x=1和x=2的交点的纵坐标分别为y1、y2,
∴y1=2n,y2=n.∴an=3n(n∈N*).
(2)(理)(i)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_DA/14.png)
∵
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_DA/15.png)
∴Sn+1>Sn,Sn≥S2(n>1,n∈N*).
∵
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_DA/17.png)
(ii)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_DA/19.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_DA/21.png)
≥
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_DA/22.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_DA/23.png)
(文)∵Sn=3(1+2+3+…+n)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_DA/24.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_DA/25.png)
∴Tn+1-Tn=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_DA/26.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_DA/27.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_DA/28.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_DA/29.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214002891629293/SYS201310232140028916292029_DA/30.png)
点评:本题考查数列的性质和应用,解题时要注意公式的合理运用和不等式的应用.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目