题目内容
已知抛物线过点A(-1,0),B(1,0),且以圆x2+y2=4的切线为准线,则抛物线的焦点的轨迹方程( )A.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184744650697331/SYS201310241847446506973011_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184744650697331/SYS201310241847446506973011_ST/1.png)
B.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184744650697331/SYS201310241847446506973011_ST/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184744650697331/SYS201310241847446506973011_ST/3.png)
C.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184744650697331/SYS201310241847446506973011_ST/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184744650697331/SYS201310241847446506973011_ST/5.png)
D.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184744650697331/SYS201310241847446506973011_ST/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184744650697331/SYS201310241847446506973011_ST/7.png)
【答案】分析:设出切线方程,表示出圆心到切线的距离求得a和b的关系,再设出焦点坐标,根据抛物线的定义求得点A,B到准线的距离等于其到焦点的距离,然后两式平方后分别相加和相减,联立后,即可求得x和y的关系式.
解答:解:设切线ax+by-1=0,则圆心到切线距离等于半径
∴
=2
∴
,
∴a2+b2=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184744650697331/SYS201310241847446506973011_DA/2.png)
设抛物线焦点为(x,y),根据抛物线定义可得![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184744650697331/SYS201310241847446506973011_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184744650697331/SYS201310241847446506973011_DA/4.png)
平方相加得:x2+1+y2=4(a2+1)①
平方相减得:x=4a,
∴
②
把②代入①可得:x2+1+y2=4(
+1)
即:![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184744650697331/SYS201310241847446506973011_DA/7.png)
∵焦点不能与A,B共线
∴y≠0
∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184744650697331/SYS201310241847446506973011_DA/8.png)
∴抛物线的焦点轨迹方程为![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184744650697331/SYS201310241847446506973011_DA/9.png)
故选B.
点评:本题以圆为载体,考查抛物线的定义,考查轨迹方程,解题时利用圆的切线性质,抛物线的定义是关键.
解答:解:设切线ax+by-1=0,则圆心到切线距离等于半径
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184744650697331/SYS201310241847446506973011_DA/0.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184744650697331/SYS201310241847446506973011_DA/1.png)
∴a2+b2=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184744650697331/SYS201310241847446506973011_DA/2.png)
设抛物线焦点为(x,y),根据抛物线定义可得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184744650697331/SYS201310241847446506973011_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184744650697331/SYS201310241847446506973011_DA/4.png)
平方相加得:x2+1+y2=4(a2+1)①
平方相减得:x=4a,
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184744650697331/SYS201310241847446506973011_DA/5.png)
把②代入①可得:x2+1+y2=4(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184744650697331/SYS201310241847446506973011_DA/6.png)
即:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184744650697331/SYS201310241847446506973011_DA/7.png)
∵焦点不能与A,B共线
∴y≠0
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184744650697331/SYS201310241847446506973011_DA/8.png)
∴抛物线的焦点轨迹方程为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184744650697331/SYS201310241847446506973011_DA/9.png)
故选B.
点评:本题以圆为载体,考查抛物线的定义,考查轨迹方程,解题时利用圆的切线性质,抛物线的定义是关键.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目