题目内容
证明以下命题:
(1) 对任一正整a,都存在整数b,c(b<c),使得成等差数列。
(2) 存在无穷多个互不相似的三角形△,其边长为正整数且成等差数列。
【答案】
【解析】作为压轴题,考查数学综合分析问题的能力以及创新能力。
(1)考虑到结构要证,;类似勾股数进行拼凑。
证明:考虑到结构特征,取特值满足等差数列,只需取b=5a,c=7a,对一切正整数a均能成立。
结合第一问的特征,将等差数列分解,通过一个可做多种结构分解的因式说明构成三角形,再证明互不相似,且无穷。
证明:当成等差数列,则,
分解得:
选取关于n的一个多项式,做两种途径的分解
对比目标式,构造,由第一问结论得,等差数列成立,
考察三角形边长关系,可构成三角形的三边。
下证互不相似。
任取正整数m,n,若△m,△相似:则三边对应成比例,
由比例的性质得:,与约定不同的值矛盾,故互不相似。
练习册系列答案
相关题目
证明以下命题:
(1)对任一正整a,都存在整数b,c(b<c),使得a2,b2,c2成等差数列.
(2)存在无穷多个互不相似的三角形△n,其边长an,bn,cn为正整数且an2,bn2,cn2成等差数列.
(1)对任一正整a,都存在整数b,c(b<c),使得a2,b2,c2成等差数列.
(2)存在无穷多个互不相似的三角形△n,其边长an,bn,cn为正整数且an2,bn2,cn2成等差数列.