题目内容
顶点在坐标原点,开口向上的抛物线经过A0(1,1),过A0作抛物 线的切线交x轴于B1,过B1点作x轴的垂线交抛物线于A1,过A1作抛物线的切线交x轴于B2,…,过An(xn,yn)作抛物线的切线交x轴于Bn+1(xn+1,0)(1)求{xn},{yn}的通项公式;
(2)设an=
1 |
1+xn |
1 |
1-xn+1 |
1 |
2 |
(3)设bn=1-log2yn,若对任意正整数n,不等式(1+
1 |
b1 |
1 |
b2 |
1 |
bn |
2n+3 |
分析:(1)由已知得抛物线方程为y=x2,y′=2x,设过点An(xn,yn)的切线为y-xn2=2xn(x-xn),令y=0和x=0,即可求出{xn},{yn}的通项公式.
(2)由(1)知xn=
,代入可得an=
+
=
+
=2-(
-
),从而Tn=a1+a2+a3+…+an>2n-[(
-
)+(
-
)+…+(
-
)]=2n-(
-
)>2n-
,于是结论即可证得.
(3)由于yn=
,可得bn=2n+1,则可得不等式(1+
)(1+
)…(1+
)≥a
,分离系数a,可得a≤
(1+
)(1+
)…(1+
),然后令f(n)=
(1+
)(1+
)…(1+
),根据函数的单调性解决a的取值范围.
(2)由(1)知xn=
1 |
2n |
1 | ||
1+
|
1 | ||
1-
|
2n |
2n+ 1 |
2n+1 |
2n+1-1 |
1 |
2n+ 1 |
1 |
2n+1-1 |
1 |
2 |
1 |
22 |
1 |
22 |
1 |
23 |
1 |
2n |
1 |
2n+1 |
1 |
2 |
1 |
2n+1 |
1 |
2 |
(3)由于yn=
1 |
4n |
1 |
b1 |
1 |
b2 |
1 |
bn |
2n+3 |
1 | ||
|
1 |
b1 |
1 |
b2 |
1 |
bn |
1 | ||
|
1 |
b1 |
1 |
b2 |
1 |
bn |
解答:解:(1)由已知得抛物线方程为y=x2,y′=2x,
则设过点An(xn,yn)的切线为y-xn2=2xn(x-xn),
令y=0,x=
,故xn-1=
,
又x0=1,∴xn=
,yn=
,
(2)证明:由(1)知xn=
,
所以an=
+
=
+
=2-(
-
),
由于
<
,
>
,
得
-
<
-
,
∴an=2-(
-
)>2-(
-
),
从而Tn=a1+a2+a3+…+an>2n-[(
-
)+(
-
)+…+(
-
)]=2n-(
-
)>2n-
,
即Tn>2n-
,
(3)由于yn=
,故bn=2n+1,
对于任意正整数n,不等式(1+
)(1+
)…(1+
)≥a
,
a≤
(1+
)(1+
)…(1+
)恒成立,
设f(n)=
(1+
)(1+
)…(1+
),
∴f(n+1)=
(1+
)(1+
)…(1+
)(1+
),
=
•(1+
)=
•
=
=
>1,
∴f(n+1)>f(n),故f(n)为递增,
∴f(n)min=f(1)=
•
=
,
∴0<a≤
.
则设过点An(xn,yn)的切线为y-xn2=2xn(x-xn),
令y=0,x=
xn |
2 |
xn |
2 |
又x0=1,∴xn=
1 |
2n |
1 |
4n |
(2)证明:由(1)知xn=
1 |
2n |
所以an=
1 | ||
1+
|
1 | ||
1-
|
2n |
2n+ 1 |
2n+1 |
2n+1-1 |
1 |
2n+ 1 |
1 |
2n+1-1 |
由于
1 |
2n+ 1 |
1 |
2n |
1 |
2n+1-1 |
1 |
2n+1 |
得
1 |
2n+ 1 |
1 |
2n+1-1 |
1 |
2n |
1 |
2n+1 |
∴an=2-(
1 |
2n+ 1 |
1 |
2n+1-1 |
1 |
2n |
1 |
2n+1 |
从而Tn=a1+a2+a3+…+an>2n-[(
1 |
2 |
1 |
22 |
1 |
22 |
1 |
23 |
1 |
2n |
1 |
2n+1 |
1 |
2 |
1 |
2n+1 |
1 |
2 |
即Tn>2n-
1 |
2 |
(3)由于yn=
1 |
4n |
对于任意正整数n,不等式(1+
1 |
b1 |
1 |
b2 |
1 |
bn |
2n+3 |
a≤
1 | ||
|
1 |
b1 |
1 |
b2 |
1 |
bn |
设f(n)=
1 | ||
|
1 |
b1 |
1 |
b2 |
1 |
bn |
∴f(n+1)=
1 | ||
|
1 |
b1 |
1 |
b2 |
1 |
bn |
1 |
bn+1 |
f(n+1) |
f(n) |
| ||
|
1 |
bn+1 |
| ||
|
2n+4 |
2n+3 |
2n+4 | ||||
|
| ||
|
∴f(n+1)>f(n),故f(n)为递增,
∴f(n)min=f(1)=
1 | ||
|
4 |
3 |
4
| ||
15 |
∴0<a≤
4
| ||
15 |
点评:本题主要考查数列与解析几何综合的知识点,本题是一道综合性比较强的习题,解答本题的关键是准确求出数列{xn},{yn}的通项公式,熟练利用函数单调性求最值等知识点,此题难度较大.
练习册系列答案
相关题目