题目内容

精英家教网顶点在坐标原点,开口向上的抛物线经过A0(1,1),过A0作抛物  线的切线交x轴于B1,过B1点作x轴的垂线交抛物线于A1,过A1作抛物线的切线交x轴于B2,…,过An(xn,yn)作抛物线的切线交x轴于Bn+1(xn+1,0)
(1)求{xn},{yn}的通项公式;
(2)设an=
1
1+xn
+
1
1-xn+1
,数列{an}的前n项和为Tn.求证:Tn>2n-
1
2

(3)设bn=1-log2yn,若对任意正整数n,不等式(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)≥a
2n+3
成立,求正数a的取值范围.
分析:(1)由已知得抛物线方程为y=x2,y=2x,设过点An(xn,yn)的切线为y-xn2=2xn(x-xn),令y=0和x=0,即可求出{xn},{yn}的通项公式.
(2)由(1)知xn=
1
2n
,代入可得an=
1
1+
1
2n
+
1
1-
1
2n+1
=
2n
2n+ 1
+
2n+1
2n+1-1
=2-(
1
2n+ 1
-
1
2n+1-1
),从而Tn=a1+a2+a3+…+an>2n-[(
1
2
-
1
22
)+(
1
22
-
1
23
)+…+(
1
2n
-
1
2n+1
)]=2n-(
1
2
-
1
2n+1
)>2n-
1
2
,于是结论即可证得.
(3)由于yn=
1
4n
,可得bn=2n+1,则可得不等式(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)≥a
2n+3
,分离系数a,可得a≤
1
2n+3
(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
),然后令f(n)=
1
2n+3
(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
),根据函数的单调性解决a的取值范围.
解答:解:(1)由已知得抛物线方程为y=x2,y=2x,精英家教网
则设过点An(xn,yn)的切线为y-xn2=2xn(x-xn),
令y=0,x=
xn
2
,故xn-1=
xn
2

又x0=1,∴xn=
1
2n
,yn=
1
4n

(2)证明:由(1)知xn=
1
2n

所以an=
1
1+
1
2n
+
1
1-
1
2n+1
=
2n
2n+ 1
+
2n+1
2n+1-1
=2-(
1
2n+ 1
-
1
2n+1-1
),
由于
1
2n+ 1
1
2n
1
2n+1-1
1
2n+1

1
2n+ 1
-
1
2n+1-1
1
2n
-
1
2n+1

∴an=2-(
1
2n+ 1
-
1
2n+1-1
)>2-(
1
2n
-
1
2n+1
),
从而Tn=a1+a2+a3+…+an>2n-[(
1
2
-
1
22
)+(
1
22
-
1
23
)+…+(
1
2n
-
1
2n+1
)]=2n-(
1
2
-
1
2n+1
)>2n-
1
2

即Tn>2n-
1
2

(3)由于yn=
1
4n
,故bn=2n+1,
对于任意正整数n,不等式(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)≥a
2n+3

a≤
1
2n+3
(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)恒成立,
设f(n)=
1
2n+3
(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
),
∴f(n+1)=
1
2n+5
(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)(1+
1
bn+1
),
f(n+1)
f(n)
=
2n+3
2++5
•(1+
1
bn+1
)=
2n+3
2++5
2n+4
2n+3
=
2n+4
2n+5
2n+3
=
4n2+16n+16
4n2+16n+15
>1,
∴f(n+1)>f(n),故f(n)为递增,
∴f(n)min=f(1)=
1
5
4
3
=
4
5
15

∴0<a≤
4
5
15
点评:本题主要考查数列与解析几何综合的知识点,本题是一道综合性比较强的习题,解答本题的关键是准确求出数列{xn},{yn}的通项公式,熟练利用函数单调性求最值等知识点,此题难度较大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网