题目内容
用数学归纳法证明"n∈N*时,x2n+1+a2n+1能被x+a整除" 的过程中.要证n=k+1时命题成立, 代数式应变形到________才能得证.[ ]
A.x2k+3+a2k+3 B.x2.x2k+1+a2a2k+1
C.a2(x2k+1+a2k+1)-x2k+1(x2-a2) D.x2(x2k+1+a2k+1)-a2k+1(x2-a2)
答案:D
解析:
提示:
解析:
解: 当n=k+1时 ∵ x2(k+1)+1+a2(k+1)+1 =x2k+3+a2k+3 =x2·x2k+1+a2·a2k+1 =x2(x2k+1+a2k+1)-x2·a2k+1+a2·a2k+1 =x2(x2k+1+a2k+1)-a2k+1(x2-a2) 又x2k+1+a2k+1和x2-a2均能被x+a整除 ∴ n=k+1时命题成立. ∴ 选(D)
|
提示:
一定要用上归纳假设: x2k+1+a2k+1能被x+a整除. |

练习册系列答案
相关题目