题目内容

已知:有穷数列{an}共有2k项(整数k≥2 ),a1=2,设该数列的前n项和为Sn且满足Sn+1=aSn+2(n=1,2,…,2k-1),a>1.
(1)求{an}的通项公式.
(2)设bn=log2an,求{bn}的前n项和Tn
(3)设cn=
Tn
n
,若a=2,求满足不等式|c1-
3
2
|+|c2-
3
2
|+…+|c2k-1-
3
2
|+|c2k-
3
2
|
36
11
时k的最小值.
分析:(1)由Sn+1=aSn+2(n=1,2,2k-1),知Sn=aSn-1+2(n=2,3,k),由此得an+1=a•an,从而能求出{an}的通项公式.
(2)由bn-bn-1=log2an-log2an-1=log2an-1log2
an
an-1
=log2a(n=2,3,2k),知{bn}是以b1=1为首项,以log2a(a>1)为公差的等差数列,由此能求出Tn
(3)cn=
Tn
n
=1+
(n-1)logx2kx-1
2
=1+
n-1
2k-1
(n=1,2,2k),当cn
3
2
时,n≤k+
1
2
,n为正整数,知n≤k时,cn
3
2
.当n≥k+1时,11k2-72k+3≥0,由此解得满足条件的k的最小值为6.
解答:解:(1)由Sn+1=aSn+2(n=1,2,2k-1)(1)
Sn=aSn-1+2(n=2,3,k)(2)
(1)-(2)得an+1=a•an(n=2,3,2k-1)
由(1)式S2=aS1+2,a1+a2=aS1+2
解得a2=2a,因为
a2
a1
=a

所以{an}是以2为首项,a为公比的等比数列,an=2•an-1(n=1,2,2k)
(2)∵bn-bn-1=log2an-log2an-1=log2an-1log2
an
an-1
=log2a(n=2,3,2k)
∴{bn}是以b1=1为首项,以log2a(a>1)为公差的等差数列
∴Tn=
(1+logx2•an-1)n
2
=
(2+(n-1)logxa)n
2

=n+
n(n-1)logxa
2
(a>1,n=1,2,2k)
(3)cn=
Tn
n
=1+
(n-1)logx2kx-1
2
=1+
n-1
2k-1
(n=1,2,2k)
当cn
3
2
时,n≤k+
1
2
,n为正整数,知n≤k时,cn
3
2

当n≥k+1时,cn
3
2
|c1-
3
2
|+|c2-
3
2
|+…|c2k-1-
3
2
|+|c2k-
3
2
|

=(
3
2
-c1)+(
3
2
-c2)++(
3
2
-ck)+(ck+1-
3
2
)++(c2k-
3
2

=(ck+1+ck+2++c2k)-(c1+c2++ck
=
1
2k-1
{[k+(k+1)++(2k-1)]+2k}-
1
2k-1
{[1+2++(k-1)]+k}
=
1
2k-1
[
k(3k-1)
2
-
k(k-1)
2
]
=
k-1
2k-1
36
11

即11k2-72k+3≥0,(11k-6)(k-6)≥0解得k≥6或k≤
36
11

所以满足条件的k的最小值为6.
点评:本题考查数列的性质和应用,解题时要注意公式的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网