题目内容
如图,四棱锥 E-ABCD中,EA⊥平面ABCD,AB⊥AD,AB∥DC,AD=AE=CD=2AB,M是EC的中点.(I)求证:平面BCE⊥平面DCE;
(II)求锐二面角M-BD-C平面角的余弦值.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123149900090754/SYS201310251231499000907018_ST/images0.png)
【答案】分析:(I)建立空间直角坐标系,确定平面BCE的法向量、平面DCE的法向量,利用法向量的垂直关系,证明面面垂直;
(II)求得
为平面BCD的法向量,平面BDM的法向量
,利用向量的夹角公式,即可求得结论.
解答:
(I)证明:由于平面ABCD,AB⊥AD,可建立以点A为坐标原点,直线AB、AD、AE分别为x,y,z轴的空间直角坐标系.
设AB=1,则A(0,0,0),B(1,0,0),D(0,2,0),E(0,0,2),C(2,2,0),
∵M是EC的中点,∴M(1,1,1)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123149900090754/SYS201310251231499000907018_DA/2.png)
设平面BCE的法向量为
,平面DCE的法向量为
,则有:
,∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123149900090754/SYS201310251231499000907018_DA/6.png)
∴可取![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123149900090754/SYS201310251231499000907018_DA/7.png)
同理:![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123149900090754/SYS201310251231499000907018_DA/8.png)
又
,∴
,
∴平面BCE⊥平面DCE
(II)解:由题意可知向量
为平面BCD的法向量,设平面BDM的法向量为![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123149900090754/SYS201310251231499000907018_DA/12.png)
∴
,∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123149900090754/SYS201310251231499000907018_DA/14.png)
令y3=1,则x3=2,z3=-1
∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123149900090754/SYS201310251231499000907018_DA/15.png)
又
,∴
,
∴锐二面角M-BD-C平面角的余弦值为
.
点评:本题考查面面垂直,考查向量知识的运用,考查面面角,解题的关键是确定平面的法向量.
(II)求得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123149900090754/SYS201310251231499000907018_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123149900090754/SYS201310251231499000907018_DA/1.png)
解答:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123149900090754/SYS201310251231499000907018_DA/images2.png)
设AB=1,则A(0,0,0),B(1,0,0),D(0,2,0),E(0,0,2),C(2,2,0),
∵M是EC的中点,∴M(1,1,1)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123149900090754/SYS201310251231499000907018_DA/2.png)
设平面BCE的法向量为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123149900090754/SYS201310251231499000907018_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123149900090754/SYS201310251231499000907018_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123149900090754/SYS201310251231499000907018_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123149900090754/SYS201310251231499000907018_DA/6.png)
∴可取
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123149900090754/SYS201310251231499000907018_DA/7.png)
同理:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123149900090754/SYS201310251231499000907018_DA/8.png)
又
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123149900090754/SYS201310251231499000907018_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123149900090754/SYS201310251231499000907018_DA/10.png)
∴平面BCE⊥平面DCE
(II)解:由题意可知向量
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123149900090754/SYS201310251231499000907018_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123149900090754/SYS201310251231499000907018_DA/12.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123149900090754/SYS201310251231499000907018_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123149900090754/SYS201310251231499000907018_DA/14.png)
令y3=1,则x3=2,z3=-1
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123149900090754/SYS201310251231499000907018_DA/15.png)
又
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123149900090754/SYS201310251231499000907018_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123149900090754/SYS201310251231499000907018_DA/17.png)
∴锐二面角M-BD-C平面角的余弦值为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123149900090754/SYS201310251231499000907018_DA/18.png)
点评:本题考查面面垂直,考查向量知识的运用,考查面面角,解题的关键是确定平面的法向量.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目