题目内容
14、在平面几何中,有射影定理:“在△ABC中,AB⊥AC,点A在BC边上的射影为D,有AB2=BD•BC.”类比平面几何定理,研究三棱锥的侧面面积与射影面积、底面面积的关系,可以得出的正确结论是:“在三棱锥A-BCD中,AD⊥平面ABC,点A在底面BCD上的射影为O,则有
![](http://thumb.zyjl.cn/pic3/upload/images/201106/6/fd7f6d51.png)
S△ABC2=S△BCO•S△BCD
![](http://thumb.zyjl.cn/pic3/upload/images/201106/6/fd7f6d51.png)
分析:这是一个类比推理的题,在由平面图形到空间图形的类比推理中,一般是由点的性质类比推理到线的性质,由线的性质类比推理到面的性质,由已知在平面几何中,(如图所示)若△ABC中,AB⊥AC,AD⊥BC,D是垂足,则AB2=BD•BC,我们可以类比这一性质,推理出若三棱锥A-BCD中,AD⊥面ABC,AO⊥面BCD,O为垂足,则S△ABC2=S△BCO•S△BCD
解答:
解:由已知在平面几何中,
若△ABC中,AB⊥AC,AE⊥BC,E是垂足,
则AB2=BD•BC,
我们可以类比这一性质,推理出:
若三棱锥A-BCD中,AD⊥面ABC,AO⊥面BCD,O为垂足,
则S△ABC2=S△BCO•S△BCD.
故答案为S△ABC2=S△BCO•S△BCD
![](http://thumb.zyjl.cn/pic3/upload/images/201011/36/2bb4bb8a.png)
若△ABC中,AB⊥AC,AE⊥BC,E是垂足,
则AB2=BD•BC,
我们可以类比这一性质,推理出:
若三棱锥A-BCD中,AD⊥面ABC,AO⊥面BCD,O为垂足,
则S△ABC2=S△BCO•S△BCD.
故答案为S△ABC2=S△BCO•S△BCD
点评:类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目