题目内容
九连环是我国的一种古老的智力游戏,它环环相扣,趣味无穷.按照某种规则解开九连环,至少需要移动圆环a9次.我们不妨考虑n个圆环的情况,用an表示解下n个圆环所需的最少移动次数,用bn表示前(n-1)个圆环都已经解下后,再解第n个圆环所需的次数,按照某种规则可得:a1=1,a2=2,an=an-2+1+bn-1,b1=1,bn=2bn-1+1.
(1)求bn的表达式;
(2)求a9的值,并求出an的表达式;
(3)求证:
+
+
+…+
<2.
(1)求bn的表达式;
(2)求a9的值,并求出an的表达式;
(3)求证:
1 |
a1 |
1 |
a2 |
1 |
a3 |
1 |
an |
分析:(1)由bn=2bn-1+1.可得bn+1=2(bn-1+1),又b1+1=2,可得数列{bn+1}是等比数列,即可得出;
(2)利用(1)及已知可得:an=an-2+1+bn-1=an-2+2n-1,递推下去即可得出a9.
当n是偶数时,an=an-2+2n-1=an-4+2n-1+2n-3
=…=a2+2n-1+2n-3+…+23=2n-1+2n-3+…+23+2,
当n是奇数时,an=an-2+2n-1=an-4+2n-1+2n-3=…=a1+2n-1+2n-3+…+22=2n-1+2n-3+…+22+1,再利用等比数列的前n项和公式即可得出;
(3)利用放缩法可得:当n∈N*时,
≤
<
×
=
,即可得出.
(2)利用(1)及已知可得:an=an-2+1+bn-1=an-2+2n-1,递推下去即可得出a9.
当n是偶数时,an=an-2+2n-1=an-4+2n-1+2n-3
=…=a2+2n-1+2n-3+…+23=2n-1+2n-3+…+23+2,
当n是奇数时,an=an-2+2n-1=an-4+2n-1+2n-3=…=a1+2n-1+2n-3+…+22=2n-1+2n-3+…+22+1,再利用等比数列的前n项和公式即可得出;
(3)利用放缩法可得:当n∈N*时,
1 |
an |
3 |
2 |
1 |
2n-1 |
3 |
2 |
1 |
3×2n-2 |
1 |
2n-1 |
解答:解:(1)由bn=2bn-1+1.可得bn+1=2(bn-1+1),又b1+1=2,
∴数列{bn+1}是以2为首项,2为公比的等比数列,
∴bn+1=2×2n-1=2n,得bn=2n-1.
(2)由已知an=an-2+1+bn-1=an-2+2n-1,
∴a9=a7+28=a5+28+26=a3+28+26+24=a1+28+26+24+22=341.
当n是偶数时,an=an-2+2n-1=an-4+2n-1+2n-3
=…=a2+2n-1+2n-3+…+23
=2n-1+2n-3+…+23+2
=
=
(2n+1-2).
当n是奇数时,an=an-2+2n-1=an-4+2n-1+2n-3
=…=a1+2n-1+2n-3+…+22
=2n-1+2n-3+…+22+1
=
=
(2n+1-1).
综上所述:an=
.
(3)当n为偶数时,
=
•
,当n为奇数时,
=
•
<
•
.
∴当n∈N*时,
≤
<
×
=
,
∴
+
+…+
<1+
+
+…+
=2(1-
)<2.
∴数列{bn+1}是以2为首项,2为公比的等比数列,
∴bn+1=2×2n-1=2n,得bn=2n-1.
(2)由已知an=an-2+1+bn-1=an-2+2n-1,
∴a9=a7+28=a5+28+26=a3+28+26+24=a1+28+26+24+22=341.
当n是偶数时,an=an-2+2n-1=an-4+2n-1+2n-3
=…=a2+2n-1+2n-3+…+23
=2n-1+2n-3+…+23+2
=
2×(2n-1) |
22-1 |
1 |
3 |
当n是奇数时,an=an-2+2n-1=an-4+2n-1+2n-3
=…=a1+2n-1+2n-3+…+22
=2n-1+2n-3+…+22+1
=
2n+1-1 |
22-1 |
1 |
3 |
综上所述:an=
|
(3)当n为偶数时,
1 |
an |
3 |
2 |
1 |
2n-1 |
1 |
an |
3 |
2 |
1 | ||
2n-
|
3 |
2 |
1 |
2n-1 |
∴当n∈N*时,
1 |
an |
3 |
2 |
1 |
2n-1 |
3 |
2 |
1 |
3×2n-2 |
1 |
2n-1 |
∴
1 |
a1 |
1 |
a2 |
1 |
an |
1 |
2 |
1 |
22 |
1 |
2n-1 |
1 |
2n |
点评:熟练掌握分类讨论思想方法、变形利用等比数列的通项公式、前n项和公式等是解题的关键.

练习册系列答案
相关题目