题目内容
【题目】如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,EF交BD于点H,将△DEF沿EF折到△D′EF的位置.
(1)证明:AC⊥HD′;
(2)若AB=5,AC=6,AE= ,OD′=2 ,求五棱锥D′﹣ABCFE体积.
【答案】
(1)
证明:∵菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,
∴EF∥AC,且EF⊥BD,
又D′H⊥EF,
D′H∩DH=H,
∴EF⊥平面DD′H,
∵HD′平面D′HD,
∴EF⊥HD′,
∵EF∥AC,
∴AC⊥HD′;
(2)
若AB=5,AC=6,则AO=3,B0=OD=4,
∵AE= ,AD=AB=5,
∴DE=5﹣ = ,
∵EF∥AC,
∴ ,
∴EH= ,EF=2EH= ,DH=3,OH=4﹣3=1,
∵HD′=DH=3,OD′=2 ,
∴满足HD′2=OD′2+OH2,
则△OHD′为直角三角形,且OD′⊥OH,
即OD′⊥底面ABCD,
即OD′是五棱锥D′﹣ABCFE的高.
底面五边形的面积S= = =12+= ,则五棱锥D′﹣ABCFE体积V= SOD′= × ×2 =
【解析】(1)根据直线平行的性质以及线面垂直的判定定理先证明EF⊥平面DD′H即可.(2)根据条件求出底面五边形的面积,结合平行线段的性质证明OD′是五棱锥D′﹣ABCFE的高,即可得到结论.;本题主要考查空间直线和平面的位置关系的判断,以及空间几何体的体积,根据线面垂直的判定定理以及五棱锥的体积公式是解决本题的关键.本题的难点在于证明OD′是五棱锥D′﹣ABCFE的高.考查学生的运算和推理能力.
【考点精析】通过灵活运用空间中直线与直线之间的位置关系,掌握相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点即可以解答此题.