题目内容
设函数,已知f(a)>1,则实数a的取值范围是________.
{a|a<-2或}
分析:通过分段函数,求出每一段不等式的解集,然后求出a的范围即可.
解答:因为函数,已知f(a)>1,
所以当a≤-1时,(a+1)2>1,解得a<-2.
当-1<a<1时,2a+2>1,解得.
当a≥1时,,解得a∈∅.
综上a的范围是{a|a<-2或}.
故答案为:{a|a<-2或}.
点评:本题考查分段函数与不等式的解法,考查分类讨论思想,计算能力.
分析:通过分段函数,求出每一段不等式的解集,然后求出a的范围即可.
解答:因为函数,已知f(a)>1,
所以当a≤-1时,(a+1)2>1,解得a<-2.
当-1<a<1时,2a+2>1,解得.
当a≥1时,,解得a∈∅.
综上a的范围是{a|a<-2或}.
故答案为:{a|a<-2或}.
点评:本题考查分段函数与不等式的解法,考查分类讨论思想,计算能力.
练习册系列答案
相关题目