题目内容
已知椭圆的焦点是F1,F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是( )
A、椭圆 | B、双曲线的一支 | C、抛物线 | D、圆 |
分析:由椭圆定义有|PF1|+|PF2|=2a,又|PQ|=|PF2|,代入上式,可得|F1Q|=2a.再由圆的定义得到结论.
解答:解:∵|PF1|+|PF2|=2a,|PQ|=|PF2|,
∴|PF1|+|PF2|=|PF1|+|PQ|=2a.
∴|F1Q|=2a.
∴动点Q到定点F1的距离等于定长2a,
∴动点Q的轨迹是圆.
故选D.
∴|PF1|+|PF2|=|PF1|+|PQ|=2a.
∴|F1Q|=2a.
∴动点Q到定点F1的距离等于定长2a,
∴动点Q的轨迹是圆.
故选D.
点评:本题主要考查椭圆和圆的定义的应用,考查学生分析转化问题的能力,属于基础题.
练习册系列答案
相关题目