题目内容
已知函数
.
(1)当
时,求
在
最小值;
(2)若
存在单调递减区间,求
的取值范围;
(3)求证:
(
).
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240226081621073.png)
(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608177337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608193447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608208588.png)
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608193447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608240283.png)
(3)求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240226082711088.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608286500.png)
(1)1 (2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608302474.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608302474.png)
试题分析:(1)先求函数的导数,利用导数求出函数f(x)的单调区间,即可可求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608193447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608208588.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608349584.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608364842.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608380393.png)
试题解析:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608396793.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608411535.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240226084271261.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608442473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608411535.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608474761.png)
(2)因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240226084891473.png)
因为若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608193447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608349584.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608364842.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608380393.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608583369.png)
②当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608598387.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608630859.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608364842.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608380393.png)
③当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608676398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608630859.png)
即方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608708820.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608723555.png)
所以方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608708820.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608754358.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608770652.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608786842.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608801571.png)
综合①②③知:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608302474.png)
或:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608364842.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608380393.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240226088791054.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240226088791126.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240226088951238.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608910499.png)
(3)(法一)根据(Ⅰ)的结论,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608926360.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608942652.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608957580.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608973539.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608988749.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240226090041143.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240226090201128.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240226090201039.png)
(法二)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022609035357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022609051657.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022609066670.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022609082585.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022609035357.png)
设当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022609113409.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240226091291025.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022609144491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240226091601129.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240226091761062.png)
根据(Ⅰ)的结论,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608926360.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608942652.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022608957580.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022609238608.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022609269837.png)
则有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240226092851212.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022609285468.png)
因此,由数学归纳法可知不等式成立.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目