题目内容

已知向量
a
=(
3
2
,-
1
2
)
b
=(1,
3
)

(Ⅰ)求证
a
b

(Ⅱ)如果对任意的s∈R+,使
m
=
a
+(1+2s)
b
n
=-k
a
+(1+
1
s
)
b
垂直,求实数k的最小值.
分析:(I)利用数量积运算,只要证明
a
b
=0
即可.
(II)由
m
n
?
m
n
=0,再利用基本不等式即可得出.
解答:(I)证明:∵
a
b
=(
3
2
,-
1
2
)•(1,
3
)
=
3
2
-
3
2
=0.
a
b

(II)解:∵
a
b
=0,|
a
|
=
(
3
2
)2+(-
1
2
)2
=1,|
b
|
=
12+(
3
)2
=2.
m
n

m
n
=[
a
+(1+2s)
b
]•[-k
a
+(1+
1
s
)
b
]

=-k
a
2
+(1+2s)(1+
1
s
)
b
2

=-k+2(3+2s+
1
s
)
=0,
∴k=6+2(2s+
1
s
)

∵s>0,
k≥6+2×2
2s•
1
s

=6+4
2
.当且仅当s=
2
2
时取等号.
∴实数k的最小值的最小值为6+4
2
点评:本题考查了数量积运算法则、向量
m
n
?
m
n
=0、基本不等式,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网