题目内容
(2012年高考(重庆理))(本小题满分13分(Ⅰ)小问8分(Ⅱ)小问5分)
设,其中
(Ⅰ)求函数 的值域
(Ⅱ)若在区间上为增函数,求 的最大值.
【考点定位】本题以三角函数的化简求值为主线,三角函数的性质为考查目的的一道综合题,考查学生分析问题解决问题的能力,由正弦函数的单调性结合条件可列,从而解得的取值范围,即可得的最在值.
解:(1)
因,所以函数的值域为
(2)因在每个闭区间上为增函数,故在每个闭区间上为增函数.
依题意知对某个成立,此时必有,于是
,解得,故的最大值为.
练习册系列答案
相关题目