ÌâÄ¿ÄÚÈÝ

3£®ÏÂÁи÷ʽ£º
£¨1£©${[{£¨-\sqrt{2}£©^{-2}}]^{-\frac{1}{2}}}=-\sqrt{2}$£»
£¨2£©ÒÑÖªloga$\frac{2}{3}$£¼1£¬Ôò$a£¾\frac{2}{3}$£»
£¨3£©º¯Êýy=2xµÄͼÏóÓ뺯Êýy=-2-xµÄͼÏó¹ØÓÚÔ­µã¶Ô³Æ£»
£¨4£©º¯Êýf£¨x£©=$\frac{1}{{\sqrt{m{x^2}+mx+1}}}$µÄ¶¨ÒåÓòÊÇR£¬ÔòmµÄÈ¡Öµ·¶Î§ÊÇ0£¼m£¼4£»
£¨5£©º¯Êýy=ln£¨-x2+x£©µÄµÝÔöÇø¼äΪ£¨-¡Þ£¬$\frac{1}{2}$]£®
ÕýÈ·µÄÓУ¨3£©£®£¨°ÑÄãÈÏΪÕýÈ·µÄÐòºÅÈ«²¿Ð´ÉÏ£©

·ÖÎö £¨1£©Ó¦ÏÈËãÀ¨ºÅÄÚ£¬Ôٳ˷½£¬½á¹ûӦΪ$\sqrt{2}$£¬
£¨2£©ÒÑÖªloga$\frac{2}{3}$£¼1£¬¶Ôµ×Êýa·ÖÀàÌÖÂÛ£ºµ±a£¾1ʱ£¬ºã³ÉÁ¢£¬µ±0£¼a£¼1ʱ£¬ÒÑÖªloga$\frac{2}{3}$£¼logaa£¬¿ÉµÃa£¼$\frac{2}{3}$£»
£¨3£©º¯Êýy=2xµÄÖУ¬Ê¹x£¬y¶¼È¡Ïà·´Êý¿ÉµÃ£º-y=2-x£¬¼´y=-2-x£¬
£¨4£©º¯Êýf£¨x£©=$\frac{1}{{\sqrt{m{x^2}+mx+1}}}$µÄ¶¨ÒåÓòÊÇR£¬¹Êmx2+mx+1£¾0ºã³ÉÁ¢£¬Ðè¶Ô¶þ´ÎÏîϵÊýÌÖÂÛ£º¿ÉµÃ¡÷£¼0£¬»òm=0£¬
£¨5£©º¯Êýy=ln£¨-x2+x£©µÄ¶¨ÒåÓòΪ£¨0£¬1£©£¬µ¥µ÷Çø¼äÓ¦ÔÚ¶¨ÒåÓòÄÚ£®

½â´ð ½â£º£¨1£©Ó¦ÏÈËãÀ¨ºÅÄÚ£¬Ôٳ˷½£¬½á¹ûӦΪ$\sqrt{2}$£¬¹Ê´íÎó£»
£¨2£©ÒÑÖªloga$\frac{2}{3}$£¼1£¬µ±a£¾1ʱ£¬ºã³ÉÁ¢£¬µ±0£¼a£¼1ʱ£¬ÒÑÖªloga$\frac{2}{3}$£¼logaa£¬¿ÉµÃa£¼$\frac{2}{3}$£¬¹Ê´íÎó£»
£¨3£©º¯Êýy=2xµÄÖУ¬Ê¹x£¬y¶¼È¡Ïà·´Êý¿ÉµÃ£º-y=2-x£¬¼´y=-2-x£¬¹ÊÕýÈ·£»
£¨4£©º¯Êýf£¨x£©=$\frac{1}{{\sqrt{m{x^2}+mx+1}}}$µÄ¶¨ÒåÓòÊÇR£¬¹Êmx2+mx+1£¾0ºã³ÉÁ¢£¬¿ÉµÃ¡÷£¼0£¬»òm=0£¬¹Ê´íÎó£»
£¨5£©º¯Êýy=ln£¨-x2+x£©µÄ¶¨ÒåÓòΪ£¨0£¬1£©¹Ê´íÎó£»
¹Ê´ð°¸Îª£¨3£©£®

µãÆÀ ¿¼²éÁ˳˷½µÄÔËË㣬¶ÔÊýº¯Êý²ÎÊýµÄÌÖÂÛÎÊÌ⣬ͼÏóµÄ¶Ô³ÆÎÊÌ⣬¶þ´Îº¯Êýºã´óÓÚÁãÎÊÌ⣮ÊôÓÚ»ù´¡ÌâÐÍ£¬Ó¦ÊìÁ·ÕÆÎÕ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø