ÌâÄ¿ÄÚÈÝ
£¨2011•¼Î¶¨Çøһģ£©¶¨Òåx1£¬x2£¬¡£¬xnµÄ¡°µ¹Æ½¾ùÊý¡±Îª
£¨n¡ÊN*£©£®
£¨1£©ÈôÊýÁÐ{an}Ç°nÏîµÄ¡°µ¹Æ½¾ùÊý¡±Îª
£¬Çó{an}µÄͨÏʽ£»
£¨2£©ÉèÊýÁÐ{bn}Âú×㣺µ±nΪÆæÊýʱ£¬bn=1£¬µ±nΪżÊýʱ£¬bn=2£®ÈôTnΪ{bn}Ç°nÏîµÄµ¹Æ½¾ùÊý£¬Çó
Tn£»
£¨3£©É躯Êýf£¨x£©=-x2+4x£¬¶Ô£¨1£©ÖеÄÊýÁÐ{an}£¬ÊÇ·ñ´æÔÚʵÊý¦Ë£¬Ê¹µÃµ±x¡Ü¦Ëʱ£¬f£¨x£©¡Ü
¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ö×î´óµÄʵÊý¦Ë£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
n |
x1+x2+¡+xn |
£¨1£©ÈôÊýÁÐ{an}Ç°nÏîµÄ¡°µ¹Æ½¾ùÊý¡±Îª
1 |
2n+4 |
£¨2£©ÉèÊýÁÐ{bn}Âú×㣺µ±nΪÆæÊýʱ£¬bn=1£¬µ±nΪżÊýʱ£¬bn=2£®ÈôTnΪ{bn}Ç°nÏîµÄµ¹Æ½¾ùÊý£¬Çó
lim |
n¡ú¡Þ |
£¨3£©É躯Êýf£¨x£©=-x2+4x£¬¶Ô£¨1£©ÖеÄÊýÁÐ{an}£¬ÊÇ·ñ´æÔÚʵÊý¦Ë£¬Ê¹µÃµ±x¡Ü¦Ëʱ£¬f£¨x£©¡Ü
an |
n+1 |
·ÖÎö£º£¨1£©ÉèÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÓÉÌâÒ⣬Tn=
=
£¬ËùÒÔSn=2n2+4n£®ÓÉ´ËÄÜÇó³ö{an}µÄͨÏʽ£®
£¨2£©ÉèÊýÁÐ{bn}µÄÇ°nÏîºÍΪSn£¬Ôò·ÖnΪżÊýºÍnΪÆæÊýʱ£¬·Ö±ðÇó³öSn£¬´Ó¶øÇó³öTn£®ÓÉ´ËÄÜÇó³ö
Tn£®
£¨3£©¼ÙÉè´æÔÚʵÊý¦Ë£¬Ê¹µÃµ±x¡Ü¦Ëʱ£¬f£¨x£©¡Ü
¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£¬Ôò-x2+4x¡Ü
¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£¬Áîcn=
£¬ÔòÊýÁÐ{cn}ÊǵÝÔöÊýÁУ¬ÓÉ´ËÄÜÍƵ¼³ö´æÔÚ×î´óµÄʵÊý¦Ë=1£¬Ê¹µÃµ±x¡Ü¦Ëʱ£¬f£¨x£©¡Ü
¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£®
n |
Sn |
1 |
2n+4 |
£¨2£©ÉèÊýÁÐ{bn}µÄÇ°nÏîºÍΪSn£¬Ôò·ÖnΪżÊýºÍnΪÆæÊýʱ£¬·Ö±ðÇó³öSn£¬´Ó¶øÇó³öTn£®ÓÉ´ËÄÜÇó³ö
lim |
n¡ú¡Þ |
£¨3£©¼ÙÉè´æÔÚʵÊý¦Ë£¬Ê¹µÃµ±x¡Ü¦Ëʱ£¬f£¨x£©¡Ü
an |
n+1 |
4n+2 |
n+1 |
4n+2 |
n+1 |
an |
n+1 |
½â´ð£º½â£º£¨1£©ÉèÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬
ÓÉÌâÒ⣬Tn=
=
£¬
ËùÒÔSn=2n2+4n£® ¡£¨1·Ö£©
ËùÒÔa1=S1=6£¬µ±n¡Ý2ʱ£¬an=Sn-Sn-1=4n+2£¬
¶øa1Ò²Âú×ã´Ëʽ£®¡£¨2·Ö£©
ËùÒÔ{an}µÄͨÏʽΪan=4n+2£®¡£¨1·Ö£©
£¨2£©ÉèÊýÁÐ{bn}µÄÇ°nÏîºÍΪSn£¬Ôòµ±nΪżÊýʱ£¬Sn=
£¬¡£¨1·Ö£©
µ±nΪÆæÊýʱ£¬Sn=
+1=
£® ¡£¨1·Ö£©
ËùÒÔTn=
£® ¡£¨3·Ö£©
ËùÒÔ
Tn=
£® ¡£¨2·Ö£©
£¨3£©¼ÙÉè´æÔÚʵÊý¦Ë£¬Ê¹µÃµ±x¡Ü¦Ëʱ£¬f£¨x£©¡Ü
¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£¬
Ôò-x2+4x¡Ü
¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£¬¡£¨1·Ö£©
Áîcn=
£¬ÒòΪcn+1-cn=
£¾0£¬
ËùÒÔÊýÁÐ{cn}ÊǵÝÔöÊýÁУ¬¡£¨1·Ö£©
ËùÒÔÖ»Òª-x2+4x¡Üc1£¬¼´x2-4x+3¡Ý0£¬
½âµÃx¡Ü1»òx¡Ý3£®¡£¨2·Ö£©
ËùÒÔ´æÔÚ×î´óµÄʵÊý¦Ë=1£¬
ʹµÃµ±x¡Ü¦Ëʱ£¬f£¨x£©¡Ü
¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£®£¨2·Ö£©
ÓÉÌâÒ⣬Tn=
n |
Sn |
1 |
2n+4 |
ËùÒÔSn=2n2+4n£® ¡£¨1·Ö£©
ËùÒÔa1=S1=6£¬µ±n¡Ý2ʱ£¬an=Sn-Sn-1=4n+2£¬
¶øa1Ò²Âú×ã´Ëʽ£®¡£¨2·Ö£©
ËùÒÔ{an}µÄͨÏʽΪan=4n+2£®¡£¨1·Ö£©
£¨2£©ÉèÊýÁÐ{bn}µÄÇ°nÏîºÍΪSn£¬Ôòµ±nΪżÊýʱ£¬Sn=
3n |
2 |
µ±nΪÆæÊýʱ£¬Sn=
3(n-1) |
2 |
3n-1 |
2 |
ËùÒÔTn=
|
ËùÒÔ
lim |
n¡ú¡Þ |
2 |
3 |
£¨3£©¼ÙÉè´æÔÚʵÊý¦Ë£¬Ê¹µÃµ±x¡Ü¦Ëʱ£¬f£¨x£©¡Ü
an |
n+1 |
Ôò-x2+4x¡Ü
4n+2 |
n+1 |
Áîcn=
4n+2 |
n+1 |
2 |
(n+1)(n+2) |
ËùÒÔÊýÁÐ{cn}ÊǵÝÔöÊýÁУ¬¡£¨1·Ö£©
ËùÒÔÖ»Òª-x2+4x¡Üc1£¬¼´x2-4x+3¡Ý0£¬
½âµÃx¡Ü1»òx¡Ý3£®¡£¨2·Ö£©
ËùÒÔ´æÔÚ×î´óµÄʵÊý¦Ë=1£¬
ʹµÃµ±x¡Ü¦Ëʱ£¬f£¨x£©¡Ü
an |
n+1 |
µãÆÀ£º±¾Ì⿼²éÊýÁеÄͨÏʽ¡¢¼«ÏÞµÄÇ󷨣¬Ì½Ë÷ʵÊýÊÇ·ñ´æÔÚ£®×ÛºÏÐÔÇ¿£¬ÄѶȴó£¬ÓÐÒ»¶¨µÄ̽Ë÷ÐÔ£¬¶ÔÊýѧ˼άµÄÒªÇó½Ï¸ß£¬½âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿