题目内容

如图,直线PA⊥平面ABCD,四边形ABCD是正方形,且PA=AD=2,点E、F、G分别是线段PA、PD、CD的中点.
(1)求四棱锥B-ADFE的体积;
(2)求异面直线EG与AD所成角的大小(结果用反三角表示).

解:(1)AB为四棱锥的高等于2,所以 SADFE==
VB-ADFE=SADFE•AB=1.
(2)取AB的中点H,则HG∥AD,所以,∠HGE即为异面直线EG与AD所成角.
AG=,EG=,HG=2,EH=
所以,Rt△EHG中,tan∠EGH==
即异面直线EF与AG所成角为arctan
分析:(1)AB为四棱锥的高等于2,利用梯形的面积公式求出 SADFE,代入四棱锥B-ADFE的体积公式VB-ADFE=SADFE•AB,运算求得结果.
(2)取AB的中点H,则∠HGE即为异面直线EG与AD所成角,Rt△EHG中,由tan∠EGH=的值 求出∠EGH 的大小.
点评:本题主要考查求棱锥的体积,异面直线所成的角的定义和求法,找出两异面直线所成的角,是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网