题目内容

(2011•温州二模)已知F是椭圆
x2
a2
+
y2
b2
=1
(a>0,b>0)的左焦点,若椭圆上存在点P,使得直线PF与圆x2+y2=b2相切,当直线PF的倾斜角为
3
,则此椭圆的离心率是(  )
分析:求出椭圆的左焦点,进而可设直线方程,利用直线l为圆O:x2+y2=b2的一条切线,可得一方程,利用椭圆的简单性质a2=b2+c2,根据离心率公式即可求出e的值.
解答:解:设椭圆的左焦点为(-c,0),c=
a2-b2

∵直线PF的倾斜角为
3

则直线PF的方程为
3
x+y+
3
c=0

∵直线PF为圆O:x2+y2=b2的一条切线
|
3
c|
2
=b
,即b=
3
2
c

a2=b2+c2=
7
4
c2

e=
c
a
=
2
7
7

故选A.
点评:本题以椭圆为载体,考查椭圆的离心率,考查圆的切线问题,有一定的综合性.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网