题目内容
某研究小组为了研究中学生的身体发育情况,在学校随机抽出20名学生,将他们的身高和体重制成如下所示的2×2列联表:
(1)在超重的学生中取两个,求一个偏高一个不偏高的概率;
(2)根据联表可有多大把握认为身高与体重有关系?
超重 | 不超重 | 合计 | |
偏高 | 4 | 1 | 5 |
不偏高 | 3 | 12 | 15 |
合计 | 7 | 13 | 20 |
(2)根据联表可有多大把握认为身高与体重有关系?
P(K2≥k) | 0.025 | 0.010 | 0.005 | 0.001 |
k | 5.024 | 6.635 | 7.879 | 10.828 |
分析:(1)由题意知本题是一个等可能事件的概率,由表格数据可知偏高4人和不偏高3人,总共7人,利用组合数写出所有的基本事件数及,一个偏高一个不偏高的事件数,得到概率;
(2)这是一个独立性检验应用题,处理本题时可根据列联表,及K2的计算公式,计算出K2的值,并代入临界值表中进行比较,不难得到答案.
(2)这是一个独立性检验应用题,处理本题时可根据列联表,及K2的计算公式,计算出K2的值,并代入临界值表中进行比较,不难得到答案.
解答:解:(1)在超重的7个学生中取两个,共有C
=21种,
一个偏高一个不偏高的有4×3=12,
∴在超重的学生中取两个,一个偏高一个不偏高的概率
=
.
(2)由于
则K2=
≈5.934>5.024
故有97.5%的把握认为该学校的男生的身高和体重之间有关系.
2 7 |
一个偏高一个不偏高的有4×3=12,
∴在超重的学生中取两个,一个偏高一个不偏高的概率
12 |
21 |
4 |
7 |
(2)由于
则K2=
20(4×12-1×3)2 |
7×13×5×15 |
故有97.5%的把握认为该学校的男生的身高和体重之间有关系.
点评:本题主要考查了古典概型及其概率计算公式、独立性检验,属于基础题.
练习册系列答案
相关题目
(本题满分14分)某研究小组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试的成绩(百分制)如下表所示:
序号 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
数学成绩 |
95 |
75 |
80 |
94 |
92 |
65 |
67 |
84 |
98 |
71 |
物理成绩 |
90 |
63 |
72 |
87 |
91 |
71 |
58 |
82 |
93 |
80 |
序号 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
数学成绩 |
67 |
93 |
64 |
78 |
77 |
90 |
57 |
84 |
72 |
83 |
物理成绩 |
77 |
82 |
48 |
85 |
69 |
91 |
61 |
82 |
78 |
86 |
若数学成绩90分(含90分)以上为优秀,物理成绩85分(含85分)以上为优秀。
⑴根据上表完成下面的列联表:
|
数学成绩优秀 |
数学成绩不优秀 |
合计 |
物理成绩优秀 |
|
|
|
物理成绩不优秀 |
|
12 |
|
合计 |
|
|
20 |
⑵根据⑴中表格的数据计算,有多少的把握,认为学生的数学成绩与物理成绩之间有关系?
某研究小组为了研究中学生的身体发育情况,在学校随机抽出20名学生,将他们的身高和体重制成如下所示的2×2列联表:
超重 | 不超重 | 合计 | |
偏高 | 4 | 1 | 5 |
不偏高 | 3 | 12 | 15 |
合计 | 7 | 13 | 20 |
(2)根据联表可有多大把握认为身高与体重有关系?
P(K2≥k) | 0.025 | 0.010 | 0.005 | 0.001 |
k | 5.024 | 6.635 | 7.879 | 10.828 |
某研究小组为了研究中学生的身体发育情况,在学校随机抽出20名学生,将他们的身高和体重制成如下所示的2×2列联表:
(1)在超重的学生中取两个,求一个偏高一个不偏高的概率;
(2)根据联表可有多大把握认为身高与体重有关系?
超重 | 不超重 | 合计 | |
偏高 | 4 | 1 | 5 |
不偏高 | 3 | 12 | 15 |
合计 | 7 | 13 | 20 |
(2)根据联表可有多大把握认为身高与体重有关系?
P(K2≥k) | 0.025 | 0.010 | 0.005 | 0.001 |
k | 5.024 | 6.635 | 7.879 | 10.828 |