题目内容
在二项式(1+x)n(n>1,n∈N*)的展开式中,含x2项的系数记为an,则
(
+
+…+
)的值为
lim |
n→∞ |
1 |
a2 |
1 |
a3 |
1 |
an |
2
2
.分析:由二项式(1+x)n(n>1,n∈N*)的展开式的通项为:Tr+1=Cnrxr可得,an=
=
n(n-1),则
=
=
-
,利用裂项求和,然后求解数列的极限即可
C | 2 n |
1 |
2 |
1 |
an |
2 |
n(n-1) |
2 |
n-1 |
2 |
n |
解答:解:二项式(1+x)n(n>1,n∈N*)的展开式的通项为:Tr+1=Cnrxr
令r=2可得,an=
=
n(n-1)
∴
=
=
-
∴
(
+
+…+
)=
(
-
+
-
+…+
-
)
=
(2-
)=2
令r=2可得,an=
C | 2 n |
1 |
2 |
∴
1 |
an |
2 |
n(n-1) |
2 |
n-1 |
2 |
n |
∴
lim |
n→∞ |
1 |
a2 |
1 |
a3 |
1 |
an |
lim |
n→∞ |
2 |
1 |
2 |
2 |
2 |
2 |
2 |
3 |
2 |
n-1 |
2 |
n |
=
lim |
n→∞ |
2 |
n |
点评:本题主要考查了二项展开式的通项的应用,裂项求解数列的和及数列极限的求解,属于中档试题
练习册系列答案
相关题目