题目内容
(04年浙江卷理)如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点。
(1)求证AM//平面BDE;
(2)求二面角A-DF-B的大小;
(3)试在线段AC上确定一点P,使得PF与BC所成的角是60°。
解析: 方法一
解: (Ⅰ)记AC与BD的交点为O,连接OE,
∵O、M分别是AC、EF的中点,ACEF是矩形,
∴四边形AOEM是平行四边形,
∴AM∥OE。
∵平面BDE, 平面BDE,
∴AM∥平面BDE。
(Ⅱ)在平面AFD中过A作AS⊥DF于S,连结BS,
∵AB⊥AF, AB⊥AD,
∴AB⊥平面ADF,
∴AS是BS在平面ADF上的射影,
由三垂线定理得BS⊥DF。
∴∠BSA是二面角A―DF―B的平面角。
在RtΔASB中,
∴
∴二面角A―DF―B的大小为60º。
(Ⅲ)设CP=t(0≤t≤2),作PQ⊥AB于Q,则PQ∥AD,
∵PQ⊥AB,PQ⊥AF,,
∴PQ⊥平面ABF,平面ABF,
∴PQ⊥QF。
在RtΔPQF中,∠FPQ=60º,
PF=2PQ。
∵ΔPAQ为等腰直角三角形,
∴
又∵ΔPAF为直角三角形,
∴,
∴
所以t=1或t=3(舍去)
即点P是AC的中点。
方法二
(Ⅰ)建立如图所示的空间直角坐标系。
设,连接NE,
则点N、E的坐标分别是(、(0,0,1),∴NE=(,
又点A、M的坐标分别是()、(
∴ AM=(
∴NE=AM且NE与AM不共线,
∴NE∥AM。
又∵平面BDE, 平面BDE,
∴AM∥平面BDF。
(Ⅱ)∵AF⊥AB,AB⊥AD,AF
∴AB⊥平面ADF。
∴为平面DAF的法向量。
∵NE?DB=(?=0,
∴NE?NF=(?=0得
NE⊥DB,NE⊥NF,
∴NE为平面BDF的法向量。
∴cos<AB,NE>=
∴AB与NE的夹角是60º。
即所求二面角A―DF―B的大小是60º。
(Ⅲ)设P(t,t,0)(0≤t≤)得
∴CD=(,0,0)
又∵PF和CD所成的角是60º。
∴
解得或(舍去),
即点P是AC的中点。