题目内容
设△ABC的内角A,B,C所对的边分别为a,b,c且acosC-
c=b.
(1)求角A的大小;
(2)若a=1,求△ABC的周长的取值范围.
| 1 | 2 |
(1)求角A的大小;
(2)若a=1,求△ABC的周长的取值范围.
分析:(1)根据正弦定理化简题中等式,得sinAcosC-
sinC=sinB.由三角形的内角和定理与诱导公式,可得sinB=sin(A+C)=sinAcosC+cosAsinC,代入前面的等式解出cosA=-
,结合A∈(0,π)可得角A的大小;
(2)根据A=
且a=1利用正弦定理,算出b=
sinB且c=
sinC,结合C=
-B代入△ABC的周长表达式,利用三角恒等变换化简得到△ABC的周长关于角B的三角函数表达式,再根据正弦函数的图象与性质加以计算,可得△ABC的周长的取值范围.
| 1 |
| 2 |
| 1 |
| 2 |
(2)根据A=
| 2π |
| 3 |
2
| ||
| 3 |
2
| ||
| 3 |
| π |
| 3 |
解答:解:(Ⅰ)∵acosC-
c=b,
∴根据正弦定理,得sinAcosC-
sinC=sinB.
又∵△ABC中,sinB=sin(π-B)=sin(A+C)=sinAcosC+cosAsinC,
∴sinAcosC-
sinC=sinAcosC+cosAsinC,
化简得-
sinC=cosAsinC,结合sinC>0可得cosA=-
∵A∈(0,π),∴A=
;
(Ⅱ)∵A=
,a=1,
∴根据正弦定理
=
,可得b=
=
=
sinB,同理可得c=
sinC,
因此,△ABC的周长l=a+b+c=1+
sinB+
sinC
=1+
[sinB+sin(
-B)]=1+
[sinB+(
cosB-
sinB)]
=1+
(
sinB+
cosB)=1+
sin(B+
).
∵B∈(0,
),得B+
∈(
,
)
∴sin(B+
)∈(
,1],可得l=a+b+c=1+
sin(B+
)∈(2,1+
]
即△ABC的周长的取值范围为(2,1+
].
| 1 |
| 2 |
∴根据正弦定理,得sinAcosC-
| 1 |
| 2 |
又∵△ABC中,sinB=sin(π-B)=sin(A+C)=sinAcosC+cosAsinC,
∴sinAcosC-
| 1 |
| 2 |
化简得-
| 1 |
| 2 |
| 1 |
| 2 |
∵A∈(0,π),∴A=
| 2π |
| 3 |
(Ⅱ)∵A=
| 2π |
| 3 |
∴根据正弦定理
| a |
| sinA |
| b |
| sinB |
| asinB |
| sinA |
| sinB | ||
sin
|
2
| ||
| 3 |
2
| ||
| 3 |
因此,△ABC的周长l=a+b+c=1+
2
| ||
| 3 |
2
| ||
| 3 |
=1+
2
| ||
| 3 |
| π |
| 3 |
2
| ||
| 3 |
| ||
| 2 |
| 1 |
| 2 |
=1+
2
| ||
| 3 |
| 1 |
| 2 |
| ||
| 2 |
2
| ||
| 3 |
| π |
| 3 |
∵B∈(0,
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| 2π |
| 3 |
∴sin(B+
| π |
| 3 |
| ||
| 2 |
2
| ||
| 3 |
| π |
| 3 |
2
| ||
| 3 |
即△ABC的周长的取值范围为(2,1+
2
| ||
| 3 |
点评:本题已知三角形的边角关系式,求角A的大小,并在边a=1的情况下求三角形的周长的取值范围.着重考查了正弦定理、三角函数的图象与性质、三角恒等变换和函数的值域与最值等知识,属于中档题.
练习册系列答案
相关题目