题目内容

设△ABC的内角A,B,C所对的边分别为a,b,c且acosC-
12
c
=b.
(1)求角A的大小;
(2)若a=1,求△ABC的周长的取值范围.
分析:(1)根据正弦定理化简题中等式,得sinAcosC-
1
2
sinC=sinB.由三角形的内角和定理与诱导公式,可得sinB=sin(A+C)=sinAcosC+cosAsinC,代入前面的等式解出cosA=-
1
2
,结合A∈(0,π)可得角A的大小;
(2)根据A=
3
且a=1利用正弦定理,算出b=
2
3
3
sinB且c=
2
3
3
sinC,结合C=
π
3
-B代入△ABC的周长表达式,利用三角恒等变换化简得到△ABC的周长关于角B的三角函数表达式,再根据正弦函数的图象与性质加以计算,可得△ABC的周长的取值范围.
解答:解:(Ⅰ)∵acosC-
1
2
c
=b,
∴根据正弦定理,得sinAcosC-
1
2
sinC=sinB.
又∵△ABC中,sinB=sin(π-B)=sin(A+C)=sinAcosC+cosAsinC,
∴sinAcosC-
1
2
sinC=sinAcosC+cosAsinC,
化简得-
1
2
sinC=cosAsinC,结合sinC>0可得cosA=-
1
2

∵A∈(0,π),∴A=
3

(Ⅱ)∵A=
3
,a=1,
∴根据正弦定理
a
sinA
=
b
sinB
,可得b=
asinB
sinA
=
sinB
sin
3
=
2
3
3
sinB,同理可得c=
2
3
3
sinC,
因此,△ABC的周长l=a+b+c=1+
2
3
3
sinB+
2
3
3
sinC
=1+
2
3
3
[sinB+sin(
π
3
-B)]=1+
2
3
3
[sinB+(
3
2
cosB-
1
2
sinB)]
=1+
2
3
3
1
2
sinB+
3
2
cosB)=1+
2
3
3
sin(B+
π
3
).
∵B∈(0,
π
3
),得B+
π
3
∈(
π
3
3

∴sin(B+
π
3
)∈(
3
2
,1],可得l=a+b+c=1+
2
3
3
sin(B+
π
3
)∈(2,1+
2
3
3
]
即△ABC的周长的取值范围为(2,1+
2
3
3
].
点评:本题已知三角形的边角关系式,求角A的大小,并在边a=1的情况下求三角形的周长的取值范围.着重考查了正弦定理、三角函数的图象与性质、三角恒等变换和函数的值域与最值等知识,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网