题目内容
(2012年高考(江西理))如图,已知正四棱锥S-ABCD所有棱长都为1,点E是侧棱SC上一动点,过点E垂直于SC的截面将正四棱锥分成上、下两部分.记SE=x(0<x<1),截面下面部分的体积为V(x),则函数y=V(x)的图像大致为
A【解析】本题综合考查了棱锥的体积公式,线面垂直,同时考查了函数的思想,导数法解决几何问题等重要的解题方法.
(定性法)当时,随着
的增大,观察图形可知,
单调递减,且递减的速度越来越快;当
时,随着
的增大,观察图形可知,
单调递减,且递减的速度越来越慢;再观察各选项中的图象,发现只有A图象符合.故选A.
【点评】对于函数图象的识别问题,若函数的图象对应的解析式不好求时,作为选择题,没必要去求解具体的解析式,不但方法繁琐,而且计算复杂,很容易出现某一步的计算错误而造成前功尽弃;再次,作为选择题也没有太多的时间去给学生解答;因此,使用定性法,不但求解快速,而且准确节约时间.

练习册系列答案
相关题目