题目内容
若等比数列的首项为,且,则公式等于 .
某工厂有工人1000名,其中250名工人参加短期培训(称为类工人),另外750名工人参加过长期培训(称为类工人).现用分层抽样方法(按类,类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).
(1)类工人和类工人中个抽查多少工人?
(2)从类工人中的抽查结果和从类工人中的抽查结果分别如下表1和表2.
表1:
表2:
① 先确定,,再完成下列频率分布直方图,就生产能力而言,类工人中个体间的差异程度与类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)
② 分别估计类工人和类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数(同一组中
的数据用该组区间的中点值作代表).
已知直线与椭圆相交于两点.
(1)若椭圆的离心率为,焦距为,求线段的长;
(2)若向量与向量互相垂直(其中为坐标原点),当椭圆的离心率时,求椭圆长轴长的最大值.
已知的导函数图象如图所示,那的图象最有可能是图中的( )
A. B.
C. D.
如图,在直三棱柱中,,,是的中点.
⑴求证:;
⑵求二面角的余弦值;
若函数在上可导,且满足,则一定有( )
A.函数在上为增函数
B.函数在上为增函数
C.函数在上为减函数
D.函数在上为减函数
抛物线的焦点坐标是( )
A. B. C. D.
《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”其意思为“已知甲、乙、并、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( )
A.钱 B.钱 C.钱 D.钱
下列函数中,满足“”的单调递增函数是( )