题目内容
已知f(x)=(x∈R)在区间[-1,1]上是增函数.
(1)求实数a的值组成的集合A;
(2)设关于x的方程f(x)=的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.
(1)A={a|-1≤a≤1}. (2){m|m≥2,或m≤-2}.)
【解析】
试题分析:(1)f'(x)== ,
∵f(x)在[-1,1]上是增函数,∴f'(x)≤0对x∈[-1,1]恒成立,
即x2-ax-2≤0对x∈[-1,1]恒成立. ①
设(x)=x2-ax-2,
① -1≤a≤1,
∵对x∈[-1,1],f(x)是连续函数,且只有当a=1时,f'(-1)=0以及当a=-1时,f'(1)=0
∴A={a|-1≤a≤1}. -6分
(2)由=,得x2-ax-2=0, ∵△=a2+8>0
∴x1,x2是方程x2-ax-2=0的两实根,
∴从而|x1-x2|==.
∵-1≤a≤1,∴|x1-x2|=≤3. 10分
要使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,
当且仅当m2+tm+1≥3对任意t∈[-1,1]恒成立,
即m2+tm-2≥0对任意t∈[-1,1]恒成立. ②
设g(t)=m2+tm-2=mt+(m2-2),
(方法一:)
②m≥2或m≤-2.
所以,存在实数m,使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,其取值范围是{m|m≥2,或m≤-2}. --14分
(注:方法二: 当m=0时,②显然不成立; 当m≠0时,
② 或 m≥2或m≤-2.
所以,存在实数m,使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,
其取值范围是{m|m≥2,或m≤-2}.)
考点:本题主要考查集合的概念,应用导数研究函数的性质、方程的根,不等式恒成立问题。
点评:难题,在某区间,导函数值非负,则函数为增函数;导函数值非正,则函数为减函数。通过研究函数的图象和性质,进一步研究方程有实根的情况,这是函数与方程思想的灵活应用。不等式恒成立问题,一般的要转化成求函数的最值问题。
π |
2 |
π |
2 |
A、函数y=f(x)•g(x)的最大值为1 | ||||
B、函数y=f(x)•g(x)的对称中心是(
| ||||
C、当x∈[-
| ||||
D、将f(x)的图象向右平移
|