题目内容
已知各项均为整数的等比数列{an},公比q>1,且满足a2a4=64,a3+2是a2,a4的等差中项.(1)求数列的通项公式(2)设An=an+1-2,Bn=log22an+1,试比较An与Bn的大小,并证明你的结论.分析:(1)利用等比中项公式直接求出a3=8,利用a3+2是a2,a4的等差中项.求出公比,然后求出通项公式;
(2)表示出An=an+1-2,Bn=log22an+1,验证二者的大小,利用数学归纳法证明第一步,验证n=4时,不等式成立,第二步,假设n=k时,结论成立,下面证明n=k+1时也成立.
(2)表示出An=an+1-2,Bn=log22an+1,验证二者的大小,利用数学归纳法证明第一步,验证n=4时,不等式成立,第二步,假设n=k时,结论成立,下面证明n=k+1时也成立.
解答:解:(1)
,∴a32=64,a3=±8.,∴a3=8,a3+2是a2,a4的等差中项,所以a2=4,a4=16,所以数列的通项公式an=2n.
(2)
下面用数学归纳法给出证明:
①当n=4时,已验证不等式成立.
②
由①②知,当n≥4(n∈N*)时,An>Bn
综上,当1≤n≤3时,An<Bn;当n≥4时,An>Bn
|
(2)
|
下面用数学归纳法给出证明:
①当n=4时,已验证不等式成立.
②
|
由①②知,当n≥4(n∈N*)时,An>Bn
综上,当1≤n≤3时,An<Bn;当n≥4时,An>Bn
点评:本题主要考查了等比数列和等差数列的性质.考查了学生对数列基本知识的掌握.难点在于作差比较大小,得出的结果不能判别符号,不少学生在此会放弃;在于要想到用数学归纳法来证明差中的一部分.
练习册系列答案
相关题目