题目内容
如图,是中国西安世界园艺博览会某区域的绿化美化示意图,其中A、B、C、D是被划分的四个区域,现用红、黄、蓝、白4种不同颜色的花选栽,要求每个区域只能栽同一种花,允许同一颜色的花可以栽在不同的区域,但相邻的区域不能栽同一色花,则A、D两个区域都栽种红花的概率是
- A.

- B.

- C.

- D.

A
分析:根据题意,依次分析A、B、C、D的四个区域可选花的颜色的情况数目,由分步计数原理计算可得A、B、C、D的四个区域栽种花的情况数目,若A、D两个区域都栽种红花,分析可得B、C区域情况数目,有3种情况,C区域有2种情况,由分步计数原理计算可得A、D两个区域都栽种红花的情况数目,由古典概型的计算公式,计算可得答案.
解答:根据题意,A、B、C、D四个区域用4种不同颜色的花选栽,
则A区域有4种选择,B区域与A的颜色不同,有3种颜色可选,即有3种情况,
C区域的颜色与A、B的颜色不同,有2种颜色可选,即有2种情况,
D区域的颜色与B、C的颜色不同,有2种颜色可选,即有2种情况,
则四个区域共有4×3×2×2=48种方案;
若A、D两个区域都栽种红花,则B区域有3种情况,C区域有2种情况,
则A、D两个区域都栽种红花有3×2=6种方案,
则A、D两个区域都栽种红花的概率为
=
;
故选A.
点评:本题考查等可能事件的概率计算与分步计数原理的应用,关键是根据题意正确求出A、B、C、D的四个区域种4种不同颜色的花与A、D两个区域都栽种红花栽花的方案数目.
分析:根据题意,依次分析A、B、C、D的四个区域可选花的颜色的情况数目,由分步计数原理计算可得A、B、C、D的四个区域栽种花的情况数目,若A、D两个区域都栽种红花,分析可得B、C区域情况数目,有3种情况,C区域有2种情况,由分步计数原理计算可得A、D两个区域都栽种红花的情况数目,由古典概型的计算公式,计算可得答案.
解答:根据题意,A、B、C、D四个区域用4种不同颜色的花选栽,
则A区域有4种选择,B区域与A的颜色不同,有3种颜色可选,即有3种情况,
C区域的颜色与A、B的颜色不同,有2种颜色可选,即有2种情况,
D区域的颜色与B、C的颜色不同,有2种颜色可选,即有2种情况,
则四个区域共有4×3×2×2=48种方案;
若A、D两个区域都栽种红花,则B区域有3种情况,C区域有2种情况,
则A、D两个区域都栽种红花有3×2=6种方案,
则A、D两个区域都栽种红花的概率为
故选A.
点评:本题考查等可能事件的概率计算与分步计数原理的应用,关键是根据题意正确求出A、B、C、D的四个区域种4种不同颜色的花与A、D两个区域都栽种红花栽花的方案数目.
练习册系列答案
相关题目