题目内容

设定义在[-2,2]上的奇函数f(x)在区间[-2,0]上单调递减,若f(a)+f(a-1)>0,求实数a的取值范围.
分析:根据f(x)在[-2,0]上单减且f(x)为奇函数,可得f(x)在[-2,2]上单调递减,从而可得不等式组,即可求实数a的取值范围.
解答:解:∵f(x)在[-2,0]上单减且f(x)为奇函数
∴f(x)在[-2,2]上单调递减(2分)
∴f(a)+f(a-1)>0
∴f(a)>-f(a-1)
∴f(a)>f(1-a)(4分)
-2≤a≤2
-2≤a-1≤2
a<1-a

-1≤a<
1
2
(12分)
点评:本题考查函数的单调性与奇偶性,考查解不等式,考查学生分析解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网