题目内容

(福建卷文19)如图,在四棱锥PABCD中,侧面PAD⊥底面ABCD,侧棱PAPD=,底面ABCD为直角梯形,其中BCAD,ABAD,AD=2AB=2BC=2,OAD中点.

(Ⅰ)求证:PO⊥平面ABCD

(Ⅱ)求异面直线PB与CD所成角的余弦值;

(Ⅲ)求点A到平面PCD的距离.

解:本小题主要考查直线与平面的位置关系、异面直线所成角、点到平面的距离等基本知识,考查空间想象能力,逻辑思维能力和运算能力..

解法一:(Ⅰ)证明:在△PAD卡中PAPDOAD中点,所以POAD.

又侧面PAD⊥底面ABCD,平面PAD∩平面ABCDADPO平面PAD

所以PO⊥平面ABCD.

(Ⅱ)连结BO,在直角梯形ABCD中,BCAD,AD=2AB=2BC

ODBCODBC,所以四边形OBCD是平行四边形,所以OBDC.

由(Ⅰ)知POOB,∠PBO为锐角,

所以∠PBO是异面直线PBCD所成的角.

因为AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,所以OB

在Rt△POA中,因为APAO=1,所以OP=1,

在Rt△PBO中,PB,cos∠PBO=,

所以异面直线PBCD所成的角的余弦值为.

(Ⅲ)由(Ⅱ)得CDOB

在Rt△POC中,PC

所以PCCDDPS△PCD=·2=.

S△=

设点A到平面PCD的距离h

VP-ACD=VA-PCDSACD·OPSPCD·h

×1×1=××h,解得h.

解法二:(Ⅰ)同解法一,

(Ⅱ)以O为坐标原点,的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系O-xyz.

A(0,-1,0),B(1,-1,0),C(1,0,0),

D(0,1,0),P(0,0,1).

所以

所以异面直线PBCD所成的角的余弦值为

(Ⅲ)设平面PCD的法向量为n=(x0,y0,x0),

由(Ⅱ)知=(-1,0,1),=(-1,1,0),

则  n·=0,所以  -x0+ x0=0,

n·=0,    -x0+ y0=0, x0=y0=x0,    

x0=1,得平面的一个法向量为n=(1,1,1).    又=(1,1,0).

从而点A到平面PCD的距离d

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网