题目内容

已知实系数一元二次方程x2+(1+a)x+a+b+1=0的两个实根为x1、x2,并且0<x1<2,x2>2,则数学公式的取值范围是


  1. A.
    (-1,-数学公式
  2. B.
    (-3,-1)
  3. C.
    (-3,-数学公式
  4. D.
    (-3,数学公式
C
分析:由方程x2+(1+a)x+1+a+b=0的两根满足0<x1<2<x2,结合对应二次函数性质得到 然后在平面直角坐标系中,做出满足条件的可行域,分析 的几何意义,然后数形结合即可得到结论.
解答:解:由程x2+(1+a)x+1+a+b=0的二次项系数为1>0,
故函数f(x)=x2+(1+a)x+1+a+b图象开口方向朝上
又∵方程x2+(1+a)x+1+a+b=0的两根满足0<x1<2<x2

,其对应的平面区域如下图阴影示:
表示阴影区域上一点与M(1,0)连线的斜率
由题意可得A(-3,2)
由图可知∈(-3,-
故选C
点评:本题考查的知识点是一元二次方程的根的分布与系数的关系,三个二次之间的关系,线性规划,其中由方程x2+(1+a)x+1+a+b=0的两根满足0<x1<2<x2,结合二次函数性质得到 解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网