题目内容

已知平面向量满足||=1,||=2,的夹角为,以为邻边作平行四边形,则此平行四边形的两条对角线中较短的一条的长度为   
【答案】分析:为邻边作平行四边形,则此平行四边形的两条对角线分别为 +-,分别求出他们的模,然后进行比较,即可得到结论.
解答:解:∵的夹角为

∴|+|==
∴|-|==
 
故以 为邻边作平行四边形,则此平行四边形的两条对角线中较短的一条的长度为
故答案为:
点评:此题是个中档题.本题考查向量的运算法则:平行四边形法则、向量的数量积的定义式以及向量的模计算公式.体现了数形结合的思想,同时也考查了学生应用知识分析解决问题的能力.
练习册系列答案
相关题目

 [番茄花园1] 已知平面向量满足,且的夹角为120°,

的取值范围是__________________ .

 


 [番茄花园1]1.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网